Superconvergence analysis of Galerkin method for semilinear parabolic integro-differential equation

被引:5
|
作者
Yang, Huaijun [1 ]
机构
[1] Zhengzhou Univ Aeronaut, Sch Math, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
Semilinear parabolic; integro-differential equation; A linearized numerical scheme; Superconvergence error estimate; FINITE-ELEMENT METHODS;
D O I
10.1016/j.aml.2021.107872
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the bilinear element used for spatial discretization and a linearized backward Euler scheme used for temporal discretization, the superconvergence error estimate is derived for semilinear parabolic integro-differential equation without certain time-step restrictions. The key is to derive a uniform boundness of the numerical solution in energy norm under the weaker assumption compared to previous literatures for nonlinear term. Numerical results are presented to confirm the correctness of the theoretical analysis. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条