Short-term streamflow forecasting: ARIMA vs neural networks

被引:0
|
作者
Frausto-Solis, Juan [1 ]
Pita, Esmeralda [2 ]
Lagunas, Javier [2 ]
机构
[1] Tecnol Monterrey, Campus Cuernavaca Autopista Sol Km 104,Colonia Re, Xochitepec 62790, Morelos, Mexico
[2] Inst Investigaciones Elect, Cuernavaca 62490, Morelos, Mexico
关键词
auto regressive integrated moving average; artificial neural networks; streamflow; forecasting;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Streamflow forecasting is very important for water resources management and flood defence. In this paper two forecasting methods are compared: ARIMA versus a multilayer perceptron neural network. This comparison is done by forecasting a streamflow of a Mexican river. Surprising results showed that in a monthly basis, ARIMA has lower prediction errors than this Neural Network.
引用
收藏
页码:402 / +
页数:2
相关论文
共 50 条
  • [31] Electricity price short-term forecasting using artificial neural networks
    Szkuta, BR
    Sanabria, LA
    Dillon, TS
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1999, 14 (03) : 851 - 857
  • [32] Residential Short-Term Load Forecasting Using Convolutional Neural Networks
    Voss, Marcus
    Bender-Saebelkampf, Christian
    Albayrak, Sahin
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2018,
  • [33] Electricity price short-term forecasting using artificial neural networks
    Applied Computing Research Institute, La Trobe University, Melbourne, Vic., Australia
    IEEE Trans Power Syst, 3 (851-857):
  • [34] Deep learning neural networks for short-term photovoltaic power forecasting
    Mellit, A.
    Pavan, A. Massi
    Lughi, V.
    RENEWABLE ENERGY, 2021, 172 : 276 - 288
  • [35] Short-term forecasting of electricity prices using generative neural networks
    Kaukin, Andrej S.
    Pavlov, Pavel N.
    Kosarev, Vladimir S.
    BIZNES INFORMATIKA-BUSINESS INFORMATICS, 2023, 17 (03): : 7 - 23
  • [36] Improved Neural Networks with Random Weights for Short-Term Load Forecasting
    Lang, Kun
    Zhang, Mingyuan
    Yuan, Yongbo
    PLOS ONE, 2015, 10 (12):
  • [37] Deep Neural Networks for Short-Term Load Forecasting in ERCOT System
    Easley, Mitchell
    Haney, Luke
    Paul, Jose
    Fowler, Kim
    Wu, Hongyu
    2018 IEEE TEXAS POWER AND ENERGY CONFERENCE (TPEC), 2018,
  • [38] Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks
    Hernandez, Luis
    Baladron, Carlos
    Aguiar, Javier M.
    Carro, Belen
    Sanchez-Esguevillas, Antonio J.
    Lloret, Jaime
    ENERGIES, 2013, 6 (03) : 1385 - 1408
  • [39] Improving short-term streamflow forecasting by flow mode clustering
    Liu, Shuqi
    Zhou, Xinzhi
    Li, Bo
    He, Xin
    Zhang, Yuexin
    Fu, Yi
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2023, 37 (05) : 1799 - 1819
  • [40] Short-term wind forecasting using artificial neural networks (ANNs)
    De Giorgi, M. G.
    Ficarella, A.
    Russo, M. G.
    ENERGY AND SUSTAINABILITY II, 2009, 121 : 197 - 208