Two-level Schwarz method for solving variational inequality with nonlinear source terms

被引:5
|
作者
Li, Chen-Liang [1 ,2 ]
Zeng, Jin-ping [3 ]
机构
[1] Guilin Univ Elect Technol, Coll Computat Sci & Math, Guilin 541004, Guangxi, Peoples R China
[2] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
[3] Hunan Univ, Dept Appl Math, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
variational inequality; nonlinear source term; two-level Schwarz method;
D O I
10.1016/j.cam.2006.11.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend the two-level Schwarz method to solve the variational inequality problems with nonlinear source terms, and establish a convergence theorem. The method converges within finite steps with an appropriate initial point. The numerical results show that the methods are efficient. (C) 2007 Published by Elsevier B.V.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 50 条
  • [31] TWO-LEVEL ADDITIVE SCHWARZ PRECONDITIONERS FOR PLATE ELEMENTS
    SUSANNE C. BRENNER
    Wuhan University Journal of Natural Sciences, 1996, (Z1) : 658 - 667
  • [32] Versatile Two-Level Schwarz Preconditioners for Multiphase Flow
    C.E. Kees
    C.T. Miller
    E.W. Jenkins
    C.T. Kelley
    Computational Geosciences, 2003, 7 : 91 - 114
  • [33] Versatile two-level Schwarz preconditioners for multiphase flow
    Kees, CE
    Miller, CT
    Jenkins, EW
    Kelley, CT
    COMPUTATIONAL GEOSCIENCES, 2003, 7 (02) : 91 - 114
  • [34] Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner
    Dubois, Olivier
    Gander, Martin J.
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XVIII, 2009, 70 : 177 - 184
  • [35] A HYBRID METHOD FOR SOLVING VARIATIONAL INEQUALITY PROBLEMS
    Liang Ximing 1 Li Fei 2 Xu Chengxian 2 1 College of Information Science and Engineering
    AppliedMathematics:AJournalofChineseUniversities, 2000, (04) : 470 - 482
  • [36] A hybrid method for solving variational inequality problems
    Liang X.
    Li F.
    Applied Mathematics-A Journal of Chinese Universities, 2000, 15 (4) : 470 - 482
  • [37] A two-level aggregation-based Newton-Krylov-Schwarz method for hydrology
    Jenkins, EW
    Berger, RC
    Hallberg, JP
    Howington, SE
    Kelley, CT
    Schmidt, JH
    Stagg, AK
    Tocci, MD
    PARALLEL COMPUTATIONAL FLUID DYNAMICS: TOWARDS TERAFLOPS, OPTIMIZATION, AND NOVEL FORMULATIONS, 2000, : 257 - 263
  • [38] Two-Level Newton Iteration Methods for Navier-Stokes Type Variational Inequality Problem
    An, Rong
    Qiu, Hailong
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (01) : 36 - 54
  • [39] Variational inequality for quasilinear wave equations with nonlinear damping terms
    Park, JY
    Bae, JJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (08) : 1065 - 1083
  • [40] A two-level method for solving power generating unit commitment problems
    Georgopoulou, Hariklia A.
    Giannakoglou, Kyriakos C.
    2007 IEEE LAUSANNE POWERTECH, VOLS 1-5, 2007, : 1326 - 1331