HYPERSPECTRAL UNMIXING VIA WAVELET BASED AUTOENCODER NETWORK

被引:4
|
作者
Yan, Bin [1 ]
Wu, Zebin [1 ]
Liu, Hongyi [1 ]
Xu, Yang [1 ]
Wei, Zhihui [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Hyperspectral unmixing; sparse autoencoder; wavelet domain; ALGORITHM;
D O I
10.1109/whispers.2019.8920935
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral unmixing is a hot topic in the field of remote sensing. Due to the limitation of spatial resolution and diversity of object distribution, hyperspectral image contains mixed pixels, which brings a great challenge for hyperspectral image processing. A novel wavelet based hyperspectral unmixing autoencoder network is proposed in this paper. In the framework of autoencoder network, multiscale wavelet coefficients of the signal are employed, which contribute to learn the intrinsic feature of endmember deeply. Moreover, the cost function of the network is designed according to the sparsity and nonnegative constraints of abundance, as well as the spectral fidelity. Experimental results on both simulated and real hyperspectral data sets demonstrate that the proposed method outperforms other state-of-the-art unmixing methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] TANet: An Unsupervised Two-Stream Autoencoder Network for Hyperspectral Unmixing
    Jin, Qiwen
    Ma, Yong
    Mei, Xiaoguang
    Ma, Jiayi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [22] Generative Adversarial Autoencoder Network for Anti-Shadow Hyperspectral Unmixing
    Sun, Bin
    Su, Yuanchao
    Sun, He
    Bai, Jinying
    Li, Pengfei
    Liu, Feng
    Liu, Dongsheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [23] Deep Autoencoder for Hyperspectral Unmixing via Global-Local Smoothing
    Xu, Xia
    Song, Xinyu
    Li, Tao
    Shi, Zhenwei
    Pan, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [24] Nonlinear hyperspectral unmixing algorithm based on deep autoencoder networks
    Han Z.
    Gao L.
    Zhang B.
    Sun X.
    Li Q.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (04): : 388 - 400
  • [25] Pixel-Level and Global Similarity-Based Adversarial Autoencoder Network for Hyperspectral Unmixing
    Tao, Wei
    Zhang, Haiyang
    Zeng, Shan
    Wang, Long
    Liu, Chaoxian
    Li, Bing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 7064 - 7082
  • [26] Multi-source attention autoencoder network for hyperspectral unmixing with LiDAR data
    Hu, Jiwei
    Bai, Yangrui
    Li, Zijun
    Jin, Qiwen
    Peng, Chengli
    NEUROCOMPUTING, 2025, 623
  • [27] SSANet: An Adaptive Spectral-Spatial Attention Autoencoder Network for Hyperspectral Unmixing
    Wang, Jie
    Xu, Jindong
    Chong, Qianpeng
    Liu, Zhaowei
    Yan, Weiqing
    Xing, Haihua
    Xing, Qianguo
    Ni, Mengying
    REMOTE SENSING, 2023, 15 (08)
  • [28] DAEN: Deep Autoencoder Networks for Hyperspectral Unmixing
    Su, Yuanchao
    Li, Jun
    Plaza, Antonio
    Marinoni, Andrea
    Gamba, Paolo
    Chakravortty, Somdatta
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4309 - 4321
  • [29] HYPERSPECTRAL IMAGE UNMIXING USING AUTOENCODER CASCADE
    Guo, Rui
    Wang, Wei
    Qi, Hairong
    2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [30] MAHUM: A Multitasks Autoencoder Hyperspectral Unmixing Model
    Chen, Jia
    Gamba, Paolo
    Li, Jun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61