Understanding the Key Step of Co2C-Catalyzed Fischer-Tropsch Synthesis

被引:15
|
作者
Wang, Baojun [1 ]
Liang, Danli [1 ]
Guan, Zun [1 ]
Li, Debao [2 ]
Zhang, Riguang [1 ]
机构
[1] Taiyuan Univ Technol, Minist Educ & Shanxi Prov, Key Lab Coal Sci & Technol, Taiyuan 030024, Shanxi, Peoples R China
[2] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Shanxi, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2020年 / 124卷 / 10期
基金
中国国家自然科学基金;
关键词
FINDING SADDLE-POINTS; CARBON-MONOXIDE; COBALT CARBIDE; CO ACTIVATION; C-2; OXYGENATE; CATALYTIC PERFORMANCE; MORPHOLOGY CONTROL; CO/AC CATALYSTS; HIGHER ALCOHOLS; LOWER OLEFINS;
D O I
10.1021/acs.jpcc.0c00611
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This research is designed to fundamentally understand CO activation acting as a crucial step in the initiation of the Fischer-Tropsch (FT) process over Co2C catalyst, the intrinsic activity, and structural sensitivity of the catalyst, which is vital to its FT performance, but remains unclear. Accordingly, CO activation over the commonly exposed Co2C-(101), (011), (010), (110), and (111) facets is investigated using density functional theory (DFT) calculations and microkinetic modeling. Results show that the CH monomer is the most abundant surface CHx species for CO activation over five Co2C facets, and the mechanism of CO activation and subsequent CH formation strongly depend on the Co2C facet. The formation rate of the CH monomer follows the order of (111) < (010) < (110) < (101) < (011). The (011) facet accounting for 35.21% of the surface is the most active for CO direct dissociation into C, followed by C hydrogenation to CH, which presents a comparable activity with the hexagonal close-packed (HCP) Co due to the presence of denser B-5-type active sites. Further, Co2C is a multifunctional catalyst for the FT process because its facets exhibit a different catalytic activity toward CO dissociation to form the key CH monomer, and as a result, C2+ hydrocarbons and oxygenates can be formed depending on the relative reaction rate between CO insertion into CHx reaction and CHx-CHx coupling. The finding of this research may lead a new avenue for rational design of Co2C-based catalysts with desirable activities and product selectivity.
引用
收藏
页码:5749 / 5758
页数:10
相关论文
共 50 条
  • [31] Fischer-Tropsch synthesis in microchannels
    Almeida, L. C.
    Echave, F. J.
    Sanz, O.
    Centeno, M. A.
    Arzamendi, G.
    Gandia, L. M.
    Sousa-Aguiar, E. F.
    Odriozola, J. A.
    Montes, M.
    CHEMICAL ENGINEERING JOURNAL, 2011, 167 (2-3) : 536 - 544
  • [32] Kinetics of the Fischer-Tropsch synthesis
    Wojciechowski, B.W.
    Catalysis reviews, 1988, 30 (04): : 629 - 702
  • [33] Reactors for Fischer-Tropsch synthesis
    Guettel, Robert
    Kunz, Ullrich
    Turek, Thomas
    CHEMICAL ENGINEERING & TECHNOLOGY, 2008, 31 (05) : 746 - 754
  • [34] Fundamentals of the Fischer-Tropsch synthesis
    Lapidus, AL
    Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges, and Opportunities, 2005, 191 : 173 - 183
  • [35] Nickel and Fischer-Tropsch Synthesis
    Enger, Bjorn Christian
    Holmen, Anders
    CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2012, 54 (04): : 437 - 488
  • [36] Reactors for the Fischer-tropsch synthesis
    Guettel, Robert
    Kunz, Ulrich
    Turek, Thomas
    CHEMIE INGENIEUR TECHNIK, 2007, 79 (05) : 531 - 543
  • [37] SELECTIVITY IN FISCHER-TROPSCH SYNTHESIS
    KUGLER, EL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1991, 201 : 3 - PETR
  • [38] Recent advances in understanding the Fischer-Tropsch synthesis (FTS) reaction
    Glasser, David
    Hildebrandt, Diane
    Liu, Xinying
    Lu, Xiaojun
    Masuku, Cornelius M.
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2012, 1 (03) : 296 - 302
  • [39] Computational exploration of Fe55@C240-catalyzed Fischer-Tropsch synthesis
    Cilpa-Karhu, Geraldine
    Laasonen, Kari
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (04) : 2741 - 2753
  • [40] Higher alcohols synthesis via Fischer-Tropsch reaction at hcp-Co@Co2C interface
    Chen, Congbiao
    Hou, Bo
    Liu, Yan
    Jia, Litao
    Ma, Zhongyi
    Wang, Jungang
    Wang, Qiang
    Li, Debao
    FUEL, 2023, 341