An Elementary Derivation of Finite Cotangent Sums

被引:0
|
作者
Park, Bryan [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2022年 / 129卷 / 08期
关键词
Primary; 11L03; Secondary; 11B68; FORMULA; PROOF;
D O I
10.1080/00029890.2022.2094171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Finite cotangent sums are closely related to values of the Riemann zeta function at the positive even integers. Over the past decades, numerous authors have obtained explicit evaluations of these sums. In this note, we present an intuitive evaluation using Laurent coefficients of powers of the cotangent function. In fact, our expression is a concise restatement of a well-known formula by Berndt and Yeap that was obtained using contour integration.
引用
收藏
页码:775 / 780
页数:6
相关论文
共 50 条