An Elementary Derivation of Finite Cotangent Sums

被引:0
|
作者
Park, Bryan [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2022年 / 129卷 / 08期
关键词
Primary; 11L03; Secondary; 11B68; FORMULA; PROOF;
D O I
10.1080/00029890.2022.2094171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Finite cotangent sums are closely related to values of the Riemann zeta function at the positive even integers. Over the past decades, numerous authors have obtained explicit evaluations of these sums. In this note, we present an intuitive evaluation using Laurent coefficients of powers of the cotangent function. In fact, our expression is a concise restatement of a well-known formula by Berndt and Yeap that was obtained using contour integration.
引用
收藏
页码:775 / 780
页数:6
相关论文
共 50 条
  • [1] Summation formulae for finite cotangent sums
    Cvijovic, Djurdje
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (03) : 1135 - 1140
  • [2] Dedekind cotangent sums
    Beck, M
    ACTA ARITHMETICA, 2003, 109 (02) : 109 - 130
  • [3] COTANGENT SUMS, A FURTHER GENERALIZATION OF DEDEKIND SUMS
    DIETER, U
    JOURNAL OF NUMBER THEORY, 1984, 18 (03) : 289 - 305
  • [4] The trace method for cotangent sums
    Ejsmont, Wiktor
    Lehner, Franz
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 177
  • [5] Partial sums of the cotangent function
    Bettin, Sandro
    Drappeau, Sary
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2020, 32 (01): : 217 - 230
  • [6] Period functions and cotangent sums
    Bettin, Sandro
    Conrey, Brian
    ALGEBRA & NUMBER THEORY, 2013, 7 (01) : 215 - 242
  • [7] An elementary result on infinite and finite direct sums of modules
    Bergman, George M.
    JOURNAL OF ALGEBRA, 2023, 631 : 731 - 737
  • [8] ASYMPTOTICS FOR MOMENTS OF CERTAIN COTANGENT SUMS
    Maier, Helmut
    Rassias, Michael Th.
    HOUSTON JOURNAL OF MATHEMATICS, 2017, 43 (01): : 207 - 222
  • [9] Asymptotic formulas for Vasyunin cotangent sums
    Draziotis, Konstantinos A.
    Fikioris, George
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 383
  • [10] RECIPROCITY LAWS FOR DEDEKIND COTANGENT SUMS
    Bayad, Abdelmejid
    Raouj, Abdelaziz
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (06) : 1691 - 1707