The nonlinear Schroedinger equation: Solitons dynamics

被引:9
|
作者
Benci, Vieri [2 ]
Ghimenti, Marco [1 ]
Micheletti, Anna Maria [2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
[2] Univ Pisa, Dipartimento Matemat Applicata, I-56127 Pisa, Italy
关键词
Soliton dynamics; Nonlinear Schroedinger equation; Orbital stability; Concentration phenomena; Semiclassical limit; LINEAR SCHRODINGER EQUATIONS; SOLITARY WAVES; SEMICLASSICAL LIMIT; STABILITY THEORY; GROUND-STATES; EXISTENCE; DIMENSIONS; EVOLUTION; SYMMETRY;
D O I
10.1016/j.jde.2010.09.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the dynamics of solitons occurring in the nonlinear Schroedinger equation when a parameter h -> 0. We prove that under suitable assumptions, the soliton approximately follows the dynamics of a point particle, namely, the motion of its barycenter q(h)(t) satisfies the equation q(h)(t) + del V (q(h) (t)) = H-h(t) where sup(t is an element of R)vertical bar H-h(t)vertical bar -> 0 as h -> 0. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3312 / 3341
页数:30
相关论文
共 50 条
  • [41] Dynamics of solitons and quasisolitons of the cubic third-order nonlinear Schrodinger equation
    Karpman, VI
    Rasmussen, JJ
    Shagalov, AG
    PHYSICAL REVIEW E, 2001, 64 (02):
  • [42] Nonlinear dynamics of optical solitons
    Wabnitz, S
    NONLINEAR MICROWAVE SIGNAL PROCESSING: TOWARDS A NEW RANGE OF DEVICES, 1996, 20 : 101 - 118
  • [43] Existence of solitons in the nonlinear beam equation
    Benci, Vieri
    Fortunato, Donato
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2012, 11 (02) : 261 - 278
  • [44] Gaussian solitons in nonlinear Schrodinger equation
    Nassar, AB
    Bassalo, JMF
    Alencar, PTS
    de Souza, JF
    de Oliveira, JE
    Cattani, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2002, 117 (08): : 941 - 946
  • [45] Existence of solitons in the nonlinear beam equation
    Vieri Benci
    Donato Fortunato
    Journal of Fixed Point Theory and Applications, 2012, 11 : 261 - 278
  • [46] Bragg solitons and the nonlinear Schrodinger equation
    de Sterke, CM
    Eggleton, BJ
    PHYSICAL REVIEW E, 1999, 59 (01) : 1267 - 1269
  • [47] Solitons of the generalized nonlinear Schrodinger equation
    Tsoy, Eduard N.
    Suyunov, Laziz A.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 414
  • [48] Colliding Solitons for the Nonlinear Schrodinger Equation
    Abou Salem, W. K.
    Froehlich, J.
    Sigal, I. M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (01) : 151 - 176
  • [49] ON THE SYMMETRY OF SCHROEDINGER EQUATION
    BAGROV, VG
    SAMSONOV, BF
    SHAPOVALOV, AV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1991, 34 (04): : 120 - 123
  • [50] Travelling-wave and separated variable solutions of a nonlinear Schroedinger equation
    Bountis, Tassos
    Nobre, Fernando D.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (08)