A Smoothing Levenberg-Marquardt Method for the Complementarity Problem Over Symmetric Cone

被引:0
|
作者
Liu, Xiangjing [1 ]
Liu, Sanyang [1 ]
机构
[1] Xian Technol Univ, 2 Xuefuzhonglu Rd, Xian 710021, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
complementarity problem; symmetric cone; Levenberg-Marquardt method; Euclidean Jordan algebra; local error bound; ALGORITHMS;
D O I
10.21136/AM.2021.0064-20
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a smoothing Levenberg-Marquardt method for the symmetric cone complementarity problem. Based on a smoothing function, we turn this problem into a system of nonlinear equations and then solve the equations by the method proposed. Under the condition of Lipschitz continuity of the Jacobian matrix and local error bound, the new method is proved to be globally convergent and locally superlinearly/quadratically convergent. Numerical experiments are also employed to show that the method is stable and efficient.
引用
收藏
页码:49 / 64
页数:16
相关论文
共 50 条
  • [31] A new smoothing and regularization Newton method for the symmetric cone complementarity problem
    Liu, Ruijuan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 55 (1-2) : 79 - 97
  • [32] A Levenberg-Marquardt method with approximate projections
    Behling, R.
    Fischer, A.
    Herrich, M.
    Iusem, A.
    Ye, Y.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 59 (1-2) : 5 - 26
  • [33] A Levenberg-Marquardt Method for Tensor Approximation
    Zhao, Jinyao
    Zhang, Xuejuan
    Zhao, Jinling
    SYMMETRY-BASEL, 2023, 15 (03):
  • [34] On the convergence properties of the Levenberg-Marquardt method
    Zhang, JL
    OPTIMIZATION, 2003, 52 (06) : 739 - 756
  • [35] A Levenberg-Marquardt method with approximate projections
    R. Behling
    A. Fischer
    M. Herrich
    A. Iusem
    Y. Ye
    Computational Optimization and Applications, 2014, 59 : 5 - 26
  • [36] Levenberg-Marquardt method for ANFIS learning
    Jang, JSR
    Mizutani, E
    1996 BIENNIAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1996, : 87 - 91
  • [37] Convergence analysis of the Levenberg-Marquardt method
    Luo, Xin-Long
    Liao, Li-Zhi
    Tam, Hon Wah
    OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (04): : 659 - 678
  • [38] Trust Region Levenberg-Marquardt Method for Linear SVM Trust Region Levenberg-Marquardt Method for Linear SVM
    Chauhan, Vinod Kumar
    Dahiya, Kalpana
    Sharma, Anuj
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2017, : 380 - 385
  • [39] Global Complexity Bound Analysis of the Levenberg-Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem
    Ueda, Kenji
    Yamashita, Nobuo
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (02) : 450 - 467
  • [40] A smoothing Levenberg-Marquardt algorithm for semi-infinite programming
    Jin, Ping
    Ling, Chen
    Shen, Huifei
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 60 (03) : 675 - 695