On a generalization of Bleimann, Butzer and Hahn operators based on q-integers

被引:12
|
作者
Agratini, Octavian [1 ]
Nowak, Grzegorz [2 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
[2] Great Poland Univ Social & Econ, PL-63000 Sroda Wielkopolska, Poland
关键词
Linear positive operator; q-integers; Bleimann; Butzer and Hahn operator; Approximation process; APPROXIMATION PROPERTIES; POLYNOMIALS;
D O I
10.1016/j.mcm.2010.10.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a class of linear positive operators based on q-integers. These operators depend on a non-negative parameter and represent a generalization of the classical Bleimann, Butzer and Hahn operators. Approximation properties are presented and bounds of the error of approximation are established. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:699 / 706
页数:8
相关论文
共 50 条
  • [41] Ibragimov-Gadjiev operators based on q-integers
    Herdem, Serap
    Buyukyazici, Ibrahim
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [42] Approximation Properties of λ-Gamma Operators Based on q-Integers
    Cheng, Wen-Tao
    Tang, Xiao-Jun
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [43] Rate of Convergence of a New Type Kantorovich Variant of Bleimann-Butzer-Hahn Operators
    Lingju Chen
    Xiao-Ming Zeng
    Journal of Inequalities and Applications, 2009
  • [44] [inline-graphic not available: see fulltext]-Parametric Bleimann Butzer and Hahn Operators
    N. I. Mahmudov
    P. Sabancıgil
    Journal of Inequalities and Applications, 2008
  • [45] ON A BERNSTEIN-TYPE OPERATOR OF BLEIMANN, BUTZER AND HAHN
    JAYASRI, C
    SITARAMAN, Y
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 47 (02) : 267 - 272
  • [46] A note on approximation of nonlinear Baskakov operators based on q-integers
    Acar, Ecem
    FILOMAT, 2024, 38 (16) : 5795 - 5806
  • [47] On certain GBS-Durrmeyer operators based on q-integers
    Barbosu, Dan
    Acu, Ana-Maria
    Muraru, Carmen Violeta
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (02) : 368 - 380
  • [48] Stancu-Schurer-Kantorovich operators based on q-integers
    Acu, Ana Maria
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 896 - 907
  • [49] Bernstein-Schurer-Kantorovich operators based on q-integers
    Agrawal, P. N.
    Finta, Zoltan
    Kumar, A. Sathish
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 222 - 231
  • [50] Statistical approximation properties of λ-Bernstein operators based on q-integers
    Cai, Qing-Bo
    Zhou, Guorong
    Li, Junjie
    OPEN MATHEMATICS, 2019, 17 : 487 - 498