HIGH CONCORDANCE OF BOVINE SINGLE NUCLEOTIDE POLYMORPHISM GENOTYPES GENERATED USING TWO INDEPENDENT GENOTYPING STRATEGIES

被引:1
|
作者
Magee, D. A. [1 ]
Berkowicz, E. W. [1 ]
Sikora, K. M. [2 ,3 ,4 ]
Sweeney, T. [1 ]
Kenny, D. A. [1 ]
Kelly, A. K. [1 ]
Evans, R. D. [5 ]
Wickham, B. W. [5 ]
Bradley, D. G. [6 ]
Spillane, C. [2 ,3 ,4 ]
MacHugh, D. E. [1 ,7 ]
机构
[1] Univ Coll Dublin, UCD Sch Agr Food Sci & Vet Med, Dublin 4, Ireland
[2] Univ Coll Cork, Dept Biochem, Genet & Biotechnol Lab, Cork, Ireland
[3] Univ Coll Cork, Biosci Inst, Cork, Ireland
[4] Natl Univ Ireland Galway, Ctr Chromosome Biol, Genet & Biotechnol Lab, Galway, Ireland
[5] Irish Cattle Breeding Federat, Bandon, Cork, Ireland
[6] Trinity Coll Dublin, Smurfit Inst, Dept Genet, Dublin, Ireland
[7] Univ Coll Dublin, UCD Conway Inst Biomol & Biomed Res, Dublin 4, Ireland
关键词
Bos taurus; Concordance rates; Genotyping; SNP; HORMONE; ERRORS; SEQUENCE; CATTLE;
D O I
10.1080/10495398.2010.509680
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Single nucleotide polymorphisms (SNPs) represent the most common form of DNA sequence variation in mammalian livestock genomes. While the past decade has witnessed major advances in SNP genotyping technologies, genotyping errors caused, in part, by the biochemistry underlying the genotyping platform used, can occur. These errors can distort project results and conclusions and can result in incorrect decisions in animal management and breeding programs; hence, SNP genotype calls must be accurate and reliable. In this study, 263 Bos spp. samples were genotyped commercially for a total of 16 SNPs. Of the total possible 4,208 SNP genotypes, 4,179 SNP genotypes were generated, yielding a genotype call rate of 99.31% (standard deviation +/- 0.93%). Between 110 and 263 samples were subsequently re-genotyped by us for all 16 markers using a custom-designed SNP genotyping platform, and of the possible 3,819 genotypes a total of 3,768 genotypes were generated (98.70% genotype call rate, SD +/- 1.89%). A total of 3,744 duplicate genotypes were generated for both genotyping platforms, and comparison of the genotype calls for both methods revealed 3,741 concordant SNP genotype call rates (99.92% SNP genotype concordance rate). These data indicate that both genotyping methods used can provide livestock geneticists with reliable, reproducible SNP genotypic data for in-depth statistical analysis.
引用
收藏
页码:257 / 262
页数:6
相关论文
共 50 条
  • [31] Genotypes and allele frequencies of buried SNPs in a bovine single-nucleotide polymorphism array in Japanese Black cattle
    Sasaki, Shinji
    Muraki, Eiji
    Inoue, Yoshinobu
    Suezawa, Ryouhei
    Nikadori, Hideki
    Yoshida, Yuuichi
    Nariai, Shouta
    Hideshima, Ryoya
    Moriwaki, Shiyunsuke
    Nakashima, Ryotaro
    Uchiyama, Katsuo
    Yoshinari, Kanako
    Takeda, Masayuki
    Kojima, Takatoshi
    ANIMAL SCIENCE JOURNAL, 2019, 90 (12) : 1503 - 1509
  • [32] Single nucleotide polymorphism calling and imputation strategies for cost-effective genotyping in a tropical maize breeding program
    de Oliveira, Amanda Avelar
    Moreira GuimarAes, Lauro Jose
    Guimaraes, Claudia Teixeira
    de Oliveira Guimaraes, Paulo Evaristo
    Pinto, Marcos de Oliveira
    Pastina, Maria Marta
    Alves Margarido, Gabriel Rodrigues
    CROP SCIENCE, 2020, 60 (06) : 3066 - 3082
  • [33] Multiplex single nucleotide polymorphism (SNP)-based genotyping in allohexaploid wheat using padlock probes
    Edwards, Keith J.
    Reid, Alex L.
    Coghill, Jane A.
    Berry, Simon T.
    Barker, Gary L. A.
    PLANT BIOTECHNOLOGY JOURNAL, 2009, 7 (04) : 375 - 390
  • [34] Single-nucleotide polymorphism (SNP) genotyping using cationic conjugated polymers in homogeneous solution
    Xinrui Duan
    Wei Yue
    Libing Liu
    Zhengping Li
    Yuliang Li
    Fuchu He
    Daoben Zhu
    Gangqiao Zhou
    Shu Wang
    Nature Protocols, 2009, 4 : 984 - 991
  • [35] A microfluidic chip for rapid single nucleotide polymorphism (SNP) genotyping using primer extension on microbeads
    Chang, Yin-Min
    Ding, Shih-Torng
    Lin, En-Chung
    Wang, Lon
    Lu, Yen-Wen
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 246 : 215 - 224
  • [36] Single nucleotide polymorphism genotyping using allele-specific PCR and fluorescence melting curves
    Papp, AC
    Pinsonneault, JK
    Cooke, G
    Sadée, W
    BIOTECHNIQUES, 2003, 34 (05) : 1068 - 1072
  • [37] A single nucleotide polymorphism genotyping method using phosphate-affinity polyacrylamide gel electrophoresis
    Kinoshita, Eiji
    Kinoshita-Kikuta, Emiko
    Koike, Tohru
    ANALYTICAL BIOCHEMISTRY, 2007, 361 (02) : 294 - 298
  • [38] Single-nucleotide polymorphism genotyping using a novel multiplexed electrochemical biosensor with nonfouling surface
    Liu, Gang
    Lao, Ruojun
    Xu, Li
    Xu, Qin
    Li, Lanying
    Zhang, Min
    Song, Shiping
    Fan, Chunhai
    BIOSENSORS & BIOELECTRONICS, 2013, 42 : 516 - 521
  • [39] Single Nucleotide Polymorphism Genotyping for Breeding and Genetics Applications in Chickpea and Pigeonpea using the BeadXpress Platform
    Roorkiwal, Manish
    Sawargaonkar, Shrikant L.
    Chitikineni, Annapurna
    Thudi, Mahendar
    Saxena, Rachit K.
    Upadhyaya, Hari D.
    Vales, M. Isabel
    Riera-Lizarazu, Oscar
    Varshney, Rajeev K.
    PLANT GENOME, 2013, 6 (02):
  • [40] Single-nucleotide polymorphism (SNP) genotyping using cationic conjugated polymers in homogeneous solution
    Duan, Xinrui
    Yue, Wei
    Liu, Libing
    Li, Zhengping
    Li, Yuliang
    He, Fuchu
    Zhu, Daoben
    Zhou, Gangqiao
    Wang, Shu
    NATURE PROTOCOLS, 2009, 4 (06) : 984 - 991