Phase Transition of the Ising Model on a Hyperbolic Lattice

被引:18
|
作者
Iharagi, Takatsugu [1 ]
Gendiar, Andrej [2 ,3 ]
Ueda, Hiroshi [4 ]
Nishino, Tomotoshi [1 ]
机构
[1] Kobe Univ, Grad Sch Sci, Dept Phys, Kobe, Hyogo 6578501, Japan
[2] Slovak Acad Sci, Inst Elect Engn, SK-84104 Bratislava, Slovakia
[3] Slovak Acad Sci, Inst Phys, SK-84511 Bratislava, Slovakia
[4] Osaka Univ, Grad Sch Engn Sci, Dept Mat Engn Sci, Osaka 5608531, Japan
关键词
DMRG; CTMRG; hyperbolic; entanglement; MATRIX RENORMALIZATION-GROUP; CLASSICAL-MODELS; FORMULATION;
D O I
10.1143/JPSJ.79.104001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The matrix product structure is considered on a regular lattice in the hyperbolic plane. The phase transition of the Ising model is observed on the hyperbolic (5,4)-lattice by means of the corner-transfer-matrix renormalization group (CTMRG) method. Calculated correlation length is always finite even at the transition temperature, where mean-field like behavior is observed. The entanglement entropy is also always finite.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] The Phase Transition of the Quantum Ising Model is Sharp
    Bjornberg, J. E.
    Grimmett, G. R.
    JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (02) : 231 - 273
  • [22] The Phase Transition of the Quantum Ising Model is Sharp
    J. E. Björnberg
    G. R. Grimmett
    Journal of Statistical Physics, 2009, 136 : 231 - 273
  • [23] Elastic backbone phase transition in the Ising model
    Najafi, M. N.
    Cheraghalizadeh, J.
    Herrmann, H. J.
    PHYSICAL REVIEW E, 2019, 100 (04)
  • [24] PERCOLATION TRANSITION OF THE ANTIFERROMAGNETIC ISING-MODEL ON A TRIANGULAR LATTICE
    ZHANG, GM
    YANG, CZ
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1993, 179 (01): : K31 - K33
  • [25] REENTRANT TRANSITION OF THE ISING-MODEL ON THE CENTERED SQUARE LATTICE
    MORITA, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (09): : 1701 - 1708
  • [26] FIRST-ORDER PHASE-TRANSITION IN AN ANHARMONIC ISING LATTICE
    HORNER, H
    ZEITSCHRIFT FUR PHYSIK, 1972, 251 (03): : 202 - &
  • [27] Phase transition of a triangular lattice Ising antiferromagnet FeI2
    Katsumata, K.
    Katori, H. Aruga
    Kimura, S.
    Narumi, Y.
    Hagiwara, M.
    Kindo, K.
    PHYSICAL REVIEW B, 2010, 82 (10)
  • [28] THE ISING-MODEL ON A RANDOM PLANAR LATTICE - THE STRUCTURE OF THE PHASE-TRANSITION AND THE EXACT CRITICAL EXPONENTS
    BOULATOV, DV
    KAZAKOV, VA
    PHYSICS LETTERS B, 1987, 186 (3-4) : 379 - 384
  • [29] A strictly hyperbolic equilibrium phase transition model
    Allaire, Gregoire
    Faccanoni, Gloria
    Kokh, Samuel
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (02) : 135 - 140
  • [30] Tricritical point of the J1-J2 Ising model on a hyperbolic lattice
    Kremar, R.
    Iharagi, T.
    Gendiar, A.
    Nishino, T.
    PHYSICAL REVIEW E, 2008, 78 (06):