Performance Analysis of Vehicle Classification System using Type-1 Fuzzy, Adaptive Neuro-Fuzzy and Type-2 Fuzzy Inference System

被引:0
|
作者
Sharma, Prashant [1 ]
Bajaj, Preeti [1 ]
机构
[1] GH Raisoni Coll Engn, Nagpur, Maharashtra, India
关键词
Type-1 fuzzy logic; ANFIS (adaptive neuro-fuzzy inference system); Type-2 Fuzzy logic;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Vehicle Class is an important parameter in road traffic measurement. In this paper authors developed an algorithm to find the accuracy of the system for vehicle classification using different techniques. The algorithm mainly reads the inference system and applies various input samples, check the class of each sample and calculate the accuracy. Initially the classification was done using Type-1 fuzzy logic system and found that the accuracy of the system was not acceptable. To increase the accuracy there was a need to meticulously adjust the shape and placement of membership function of different input variables. This process was time consuming and inaccurate. Then the same objective was implemented using adaptive neuro-fuzzy inference system and it was observed that the membership functions are finely tuned by antis and accuracy was greatly increased. Finally, type-2 fuzzy inference system is used for the same purpose and it is expected that it may further improve the results as imperfection and uncertainty in the vehicle data are very nicely handled by type-2 fuzzy system.
引用
收藏
页码:570 / 573
页数:4
相关论文
共 50 条
  • [21] Adaptive Neuro-Fuzzy Inference System in Fuzzy Measurement to Track Association
    Tafti, Abdolreza Dehghani
    Sadati, Nasser
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2010, 132 (02): : 1 - 8
  • [22] Adaptive neuro-fuzzy inference system of engineering vehicle shift decision
    Wang, Zhuo
    Zhao, Dingxuan
    Gong, Jie
    Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, 2002, 33 (06):
  • [23] ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM BASED MODELLING OF VEHICLE GUIDANCE
    Avdagic, Zikrija
    Cernica, Elvedin
    Omanovic, Samir
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2019, 14 (04): : 2116 - 2131
  • [24] Face Recognition System using Adaptive Neuro-Fuzzy Inference System
    Chandrasekhar, Tadi
    Kumar, Ch. Sumanth
    2017 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2017, : 448 - 455
  • [25] Noise cancellation by using Adaptive Neuro-Fuzzy Inference System
    Zhang, Bao-cheng
    Xu, Xie-xian
    Chuan Bo Li Xue/Journal of Ship Mechanics, 2000, 4 (04): : 62 - 67
  • [26] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Satyanarayana Yegireddi
    Arvind Kumar
    Computational Geosciences, 2008, 12 : 513 - 523
  • [27] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Yegireddi, Satyanarayana
    Kumar, Arvind
    COMPUTATIONAL GEOSCIENCES, 2008, 12 (04) : 513 - 523
  • [28] Illuminant Estimation Using Adaptive Neuro-Fuzzy Inference System
    Luo, Yunhui
    Wang, Xingguang
    Wang, Qing
    Chen, Yehong
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [29] Seizure Prediction Using Adaptive Neuro-Fuzzy Inference System
    Rabbi, Ahmed F.
    Azinfar, Leila
    Fazel-Rezai, Reza
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 2100 - 2103
  • [30] Text Summarization Using Adaptive Neuro-Fuzzy Inference System
    Warule, Pratiksha D.
    Sawarkar, S. D.
    Gulati, Archana
    COMPUTING AND NETWORK SUSTAINABILITY, 2019, 75