Rapid thermal processing chamber for in-situ x-ray diffraction

被引:16
|
作者
Ahmad, Md Imteyaz [1 ]
Van Campen, Douglas G. [1 ]
Fields, Jeremy D. [2 ]
Yu, Jiafan [1 ]
Pool, Vanessa L. [1 ]
Parilla, Philip A. [2 ]
Ginley, David S. [2 ]
Van Hest, Maikel F. A. M. [1 ]
Toney, Michael F. [1 ]
机构
[1] SLAC Natl Accelerator Lab, SSRL, Menlo Pk, CA 94025 USA
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2015年 / 86卷 / 01期
关键词
CONTACTS;
D O I
10.1063/1.4904848
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Rapid thermal processing (RTP) is widely used for processing a variety of materials, including electronics and photovoltaics. Presently, optimization of RTP is done primarily based on ex-situ studies. As a consequence, the precise reaction pathways and phase progression during the RTP remain unclear. More awareness of the reaction pathways would better enable process optimization and foster increased adoption of RTP, which offers numerous advantages for synthesis of a broad range of materials systems. To achieve this, we have designed and developed a RTP instrument that enables real-time collection of X-ray diffraction data with intervals as short as 100 ms, while heating with ramp rates up to 100 degrees Cs-1, and with a maximum operating temperature of 1200 degrees C. The system is portable and can be installed on a synchrotron beamline. The unique capabilities of this instrument are demonstrated with in-situ characterization of a Bi2O3-SiO2 glass frit obtained during heating with ramp rates 5 degrees Cs-1 and 100 degrees Cs-1, revealing numerous phase changes. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] In-situ synchrotron X-ray diffraction study of scorodite at high pressure
    Fan, Dawei
    Ma, Maining
    Wei, Shuyi
    Li, BaoSheng
    Chen, Zhiqiang
    Xie, Hongsen
    HIGH TEMPERATURES-HIGH PRESSURES, 2013, 42 (03) : 203 - 209
  • [42] In-situ x-ray diffraction study of the crystallization kinetics of mesoporous titania
    Kirsch, BL
    Riley, AE
    Richman, EK
    Tolbert, SH
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U1543 - U1543
  • [43] In-situ X-ray diffraction study of Langmuir-Blodgett deposition
    Durbin, MK
    Malik, A
    Richter, AG
    Huang, KG
    Dutta, P
    LANGMUIR, 1997, 13 (24) : 6547 - 6549
  • [44] IN-SITU X-RAY DIFFRACTION STUDIES OF IRON ORE SINTER PHASES
    Scarlett, N. V. Y.
    Pownceby, M. I.
    Christensen, A. N.
    Madsen, I. C.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2002, 58 : C363 - C363
  • [45] In-situ X-ray diffraction of corrosion products formed on iron surfaces
    Takahashi, Y
    Matsubara, E
    Suzuki, S
    Okamoto, Y
    Komatsu, T
    Konishi, H
    Mizuki, J
    Waseda, Y
    MATERIALS TRANSACTIONS, 2005, 46 (03) : 637 - 642
  • [47] ONLINE PROCESSING OF PHARMACEUTICAL MATERIALS USING IN-SITU X-RAY-DIFFRACTION
    MACCALMAN, ML
    ROBERTS, KJ
    KERR, C
    HENDRIKSEN, B
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1995, 28 : 620 - 622
  • [48] Thermal expansion coefficient of carbon-supported Pt nanoparticles: In-situ X-ray diffraction study
    Leontyev, I. N.
    Kulbakov, A. A.
    Allix, M.
    Rakhmatullin, A.
    Kuriganova, A. B.
    Maslova, O. A.
    Smirnova, N. V.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (05):
  • [49] Thermal expansion and compressibility of alamosite (PbSiO3) determined by in-situ synchrotron X-ray diffraction
    Cunha, T. R.
    Sampaio, D. V.
    Pena, R. B.
    Moulton, B. J. A.
    Lancelotti, R. F.
    Alabarse, F. G.
    Rodrigues, A. D.
    Pizani, P. S.
    CERAMICS INTERNATIONAL, 2022, 48 (23) : 34350 - 34354
  • [50] Thermal Stress Estimation of Tungsten Fiber Reinforced Titanium Composite by In-situ X-ray Diffraction Method
    Masayuki, Nishida
    Masashi, Haneoka
    Tatsuya, Matsue
    Tian, Jing
    Takao, Hanabusa
    INTERNATIONAL CONFERENCE ON RESIDUAL STRESSES 9 (ICRS 9), 2014, 768-769 : 335 - +