Effect of 24-epibrassinolide on reactive oxygen species and antioxidative defense systems in tall fescue plants under lead stress

被引:48
|
作者
Zhong, Woxiu [1 ]
Xie, Chengcheng [1 ]
Hu, Dan [2 ]
Pu, Siyi [1 ]
Xiong, Xi [3 ]
Ma, Jun [1 ]
Sun, Lingxia [1 ]
Huang, Zhuo [1 ]
Jiang, Mingyan [1 ]
Li, Xi [1 ]
机构
[1] Sichuan Agr Univ, Coll Landscape Architecture, 211 Huimin Rd, Wenjiang 611130, Sichuan, Peoples R China
[2] Chengdu Univ Technol, Coll Tourism & Urban Rural Planning, 1 Dongsan Rd, Chenghua 610051, Sichuan, Peoples R China
[3] Univ Missouri, Div Plant Sci, Columbia, MO 65211 USA
基金
中国国家自然科学基金;
关键词
24-Epibrassinolide; Antioxidant system; Lead stress; ROS level; Tall fescue; INDUCED OXIDATIVE STRESS; SOLANUM-NIGRUM L; HEAVY-METALS; NITRIC-OXIDE; GROWTH; TOLERANCE; CADMIUM; PROLINE; BRASSINOSTEROIDS; PHOTOSYNTHESIS;
D O I
10.1016/j.ecoenv.2019.109831
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lead is one of the most hazardous pollutants to both the environment as well as human beings. As one of the approaches to enhance phytoremediation, brassinosteroids are predicted as a potential candidate phytohormone for assisted phytoremediation. Few studies have focused on the physiological regulations of tall fescue plants (Festuca arundinacea Schreb.), a potential phytoremediation species, for its responses to applications of brassinosteroids under lead stress. Therefore, the objectives of this study were to investigate the effects of foliar application of 24-epibrassinolide, a brassinosteroids analogue, on reactive oxygen species accumulation and antioxidative defense systems of tall fescue when exposed to lead, and ultimately its potential to be used in phytoremediation. When exposed to lead (1000 mg/kg) for 80 d, decreases in shoot and root biomass of tall fescue biomass as well as chlorophyll and carotenoid productions were found. Foliar application of 24-epibrassinolide at three rates and five applications every 7 d improved the biomass of both shoots and roots, and increased the photosynthetic pigments. The improved lead tolerance in tall fescue plants after 24-epibrassinolide applications was associated with reduced H2O2 and O-2(center dot-) accumulations and increased antioxidative enzyme activities including superoxide dismutase, catalase, and guaiacol peroxidase. Additionally, osmoprotectants increased and lipid peroxidation decreased. Ultimately, foliar applications of 24-epibrassinolide enhanced the lead recovery rate of tall fescue plants, proving its potential role in phytoremediation for soil contaminated with heavy metals such as lead.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator
    Hasanuzzaman, Mirza
    Bhuyan, M. H. M. Borhannuddin
    Zulfiqar, Faisal
    Raza, Ali
    Mohsin, Sayed Mohammad
    Al Mahmud, Jubayer
    Fujita, Masayuki
    Fotopoulos, Vasileios
    ANTIOXIDANTS, 2020, 9 (08) : 1 - 52
  • [32] Effects of 24-epibrassinolide on plant growth, antioxidants defense system, and endogenous hormones in two wheat varieties under drought stress
    Khan, Imran
    Awan, Samrah Afzal
    Ikram, Rizwana
    Rizwan, Muhammad
    Akhtar, Nosheen
    Yasmin, Humaira
    Sayyed, Riyaz Z.
    Ali, Shafaqat
    Ilyas, Noshin
    PHYSIOLOGIA PLANTARUM, 2021, 172 (02) : 696 - 706
  • [33] 24-Epibrassinolide Simultaneously Stimulates Photosynthetic Machinery and Biomass Accumulation in Tomato Plants under Lead Stress: Essential Contributions Connected to the Antioxidant System and Anatomical Structures
    Maia, Camille Ferreira
    Serrao da Silva, Breno Ricardo
    Batista, Bruno Lemos
    Bajguz, Andrzej
    da Silva Lobato, Allan Klynger
    AGRONOMY-BASEL, 2022, 12 (09):
  • [34] Mechanisms of reactive oxygen species in plants under drought stress
    Wang, Fuxiang
    Xiao, Kaizhuan
    Jiang, Shenfei
    Qu, Mengyu
    Lian, Ling
    He, Wei
    Chen, Liping
    Xie, Huaan
    Zhang, Jianfu
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (17): : 1765 - 1779
  • [35] Signaling role of reactive oxygen species in plants under stress
    V. D. Kreslavski
    D. A. Los
    S. I. Allakhverdiev
    Vl. V. Kuznetsov
    Russian Journal of Plant Physiology, 2012, 59 : 141 - 154
  • [36] Signaling Role of Reactive Oxygen Species in Plants under Stress
    Kreslavski, V. D.
    Los, D. A.
    Allakhverdiev, S. I.
    Kuznetsov, Vl. V.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2012, 59 (02) : 141 - 154
  • [37] Reactive oxygen species signaling in plants under abiotic stress
    Choudhury, Shuvasish
    Panda, Piyalee
    Sahoo, Lingaraj
    Panda, Sanjib Kumar
    PLANT SIGNALING & BEHAVIOR, 2013, 8 (04) : e236811 - e236816
  • [38] Effect of 24-epibrassinolide treatment on the metabolism of eggplant fruits in relation to development of pulp browning under chilling stress
    Hui Gao
    LiNa Kang
    Qing Liu
    Ni Cheng
    BiNi Wang
    Wei Cao
    Journal of Food Science and Technology, 2015, 52 : 3394 - 3401
  • [39] Effect of 24-epibrassinolide on biomass, growth and free proline concentration in Spirulina platensis (Cyanophyta) under NaCl stress
    Saygideger, Saadet
    Deniz, Fatih
    PLANT GROWTH REGULATION, 2008, 56 (03) : 219 - 223
  • [40] Effect of Exogenous 24-Epibrassinolide on Salt Resistance of watermelon (Citrullus lanatus L.) under Salinity Stress
    Cheng, Weishun
    Huang, Yibing
    Meng, Congfang
    Zhang, Na
    Zeng, Hongxia
    Ren, Jian
    Li, Yuhua
    Sun, Yuhong
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON ADVANCED DESIGN AND MANUFACTURING ENGINEERING, 2015, 39 : 68 - 75