Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks

被引:13
|
作者
Bollepalli, Sandeep Chandra [1 ]
Sevakula, Rahul K. [1 ]
Au-Yeung, Wan-Tai M. [1 ]
Kassab, Mohamad B. [1 ]
Merchant, Faisal M. [4 ]
Bazoukis, George [5 ]
Boyer, Richard [2 ]
Isselbacher, Eric M. [3 ]
Armoundas, Antonis A. [1 ,6 ]
机构
[1] Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA 02114 USA
[2] Massachusetts Gen Hosp, Anesthesia Dept, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Healthcare Transformat Lab, Boston, MA 02114 USA
[4] Emory Univ, Sch Med, Cardiol Div, Atlanta, GA USA
[5] Evangelismos Gen Hosp Athens, Dept Cardiol 2, Athens, Greece
[6] MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
基金
美国国家卫生研究院;
关键词
convolutional neural networks; false alarms; intensive care unit monitors; machine learning; multi-class classification; FALSE ALARM REDUCTION; ARTERIAL-BLOOD PRESSURE; SIGNAL-QUALITY; ELECTROCARDIOGRAM; CLASSIFICATION; ICU; SUPPRESSION; MORPHOLOGY; MONITORS; RHYTHM;
D O I
10.1161/JAHA.121.023222
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Accurate detection of arrhythmic events in the intensive care units (ICU) is of paramount significance in providing timely care. However, traditional ICU monitors generate a high rate of false alarms causing alarm fatigue. In this work, we develop an algorithm to improve life threatening arrhythmia detection in the ICUs using a deep learning approach. Methods and Results This study involves a total of 953 independent life-threatening arrhythmia alarms generated from the ICU bedside monitors of 410 patients. Specifically, we used the ECG (4 channels), arterial blood pressure, and photoplethysmograph signals to accurately detect the onset and offset of various arrhythmias, without prior knowledge of the alarm type. We used a hybrid convolutional neural network based classifier that fuses traditional handcrafted features with features automatically learned using convolutional neural networks. Further, the proposed architecture remains flexible to be adapted to various arrhythmic conditions as well as multiple physiological signals. Our hybrid- convolutional neural network approach achieved superior performance compared with methods which only used convolutional neural network. We evaluated our algorithm using 5-fold cross-validation for 5 times and obtained an accuracy of 87.5%+/- 0.5%, and a score of 81%+/- 0.9%. Independent evaluation of our algorithm on the publicly available PhysioNet 2015 Challenge database resulted in overall classification accuracy and score of 93.9% and 84.3%, respectively, indicating its efficacy and generalizability. Conclusions Our method accurately detects multiple arrhythmic conditions. Suitable translation of our algorithm may significantly improve the quality of care in ICUs by reducing the burden of false alarms.
引用
收藏
页数:74
相关论文
共 50 条
  • [31] Real-Time Object Detection for AUVs Using Self-Cascaded Convolutional Neural Networks
    Song, Yan
    He, Bo
    Liu, Peng
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2021, 46 (01) : 56 - 67
  • [32] Using 3D Convolutional Neural Networks for Real-time Detection of Soccer Events
    Rongved, Olav A. Nergard
    Hicks, Steven A.
    Thambawita, Vajira
    Stensland, Hakon K.
    Zouganeli, Evi
    Johansen, Dag
    Midoglu, Cise
    Riegler, Michael A.
    Halvorsen, Pal
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2021, 15 (02) : 161 - 187
  • [33] Real-Time Damage Detection in Fiber Lifting Ropes Using Lightweight Convolutional Neural Networks
    Jalonen, Tuomas
    Al-Sa'd, Mohammad
    Mellanen, Roope
    Kiranyaz, Serkan
    Gabbouj, Moncef
    IEEE SENSORS JOURNAL, 2025, 25 (04) : 7496 - 7507
  • [34] Toward real-time detection of unmodeled gravitational wave transients using convolutional neural networks
    Skliris, Vasileios
    Norman, Michael R. K.
    Sutton, Patrick J.
    PHYSICAL REVIEW D, 2024, 110 (10)
  • [35] Real-Time classification of Plankton species using Convolutional Neural Networks
    Nandini, Tata Sai
    Swethaa, S.
    Bolem, Srinivas
    Dharani, G.
    Thangarasu, Sivasakthi
    OCEANS 2022, 2022,
  • [36] Towards Neuroimaging real-time driving using Convolutional Neural Networks
    Musoles, Carlos Fernandez
    2016 8TH COMPUTER SCIENCE AND ELECTRONIC ENGINEERING CONFERENCE (CEEC), 2016, : 130 - 135
  • [37] Deblurring for spiral real-time MRI using convolutional neural networks
    Lim, Yongwan
    Bliesener, Yannick
    Narayanan, Shrikanth
    Nayak, Krishna S.
    MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (06) : 3438 - 3452
  • [38] LEARNING A REAL-TIME GENERIC TRACKER USING CONVOLUTIONAL NEURAL NETWORKS
    Zhu, Linnan
    Yang, Lingxiao
    Zhang, David
    Zhang, Lei
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 1219 - 1224
  • [39] Drowsiness detection in real-time via convolutional neural networks and transfer learning
    Salem, Dina
    Waleed, Mohamed
    Journal of Engineering and Applied Science, 2024, 71 (01):
  • [40] Real-time Golf Ball Detection and Tracking Based on Convolutional Neural Networks
    Zhang, Xiaohan
    Zhang, Tianxiao
    Yang, Yiju
    Wang, Zongbo
    Wang, Guanghui
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 2808 - 2813