Shape Control in Multivariate Barycentric Rational Interpolation

被引:0
|
作者
Nguyen, Hoa Thang [1 ]
Cuyt, Annie [1 ]
Celis, Oliver Salazar [1 ]
机构
[1] Univ Antwerp, Dept Wis Inf, B-2020 Antwerp, Belgium
关键词
rational function; multivariate; interpolation; shape control; surface;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The most stable formula for a rational interpolant for use on a finite interval is the barycentric form [1, 2]. A simple choice of the barycentric weights ensures the absence of (unwanted) poles on the real line [3]. In [4] we indicate that a more refined choice of the weights in barycentric rational interpolation can guarantee comonotonicity and coconvexity of the rational interpolant in addition to a polefree region of interest. In this presentation we generalize the above to the multivariate case. We use a product-like form of univariate barycenttic rational interpolants and indicate how the location of the poles and the shape of the function can be controlled. This functionality is of importance in the construction of mathematical models that need to express a certain trend, such as in probability distributions, economics, population dynamics, tumor growth models etc.
引用
收藏
页码:543 / 548
页数:6
相关论文
共 50 条
  • [21] Matrices for the direct determination of the barycentric weights of rational interpolation
    Berrut, JP
    Mittelmann, HD
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 78 (02) : 355 - 370
  • [22] On the Lebesgue constant of barycentric rational interpolation at equidistant nodes
    Len Bos
    Stefano De Marchi
    Kai Hormann
    Georges Klein
    Numerische Mathematik, 2012, 121 : 461 - 471
  • [23] Convergence rates of a family of barycentric osculatory rational interpolation
    Ke Jing
    Ning Kang
    Gongqin Zhu
    Journal of Applied Mathematics and Computing, 2017, 53 : 169 - 181
  • [24] A periodic map for linear barycentric rational trigonometric interpolation
    Berrut, Jean-Paul
    Elefante, Giacomo
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 371
  • [25] Barycentric-thiele type blending rational interpolation
    Jiang, Ping
    Shi, Manhong
    Journal of Information and Computational Science, 2015, 12 (05): : 1731 - 1738
  • [26] Barycentric rational interpolation method for solving KPP equation
    Li, Jin
    Cheng, Yongling
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (05): : 3014 - 3029
  • [27] Barycentric rational interpolation with no poles and high rates of approximation
    Floater, Michael S.
    Hormann, Kai
    NUMERISCHE MATHEMATIK, 2007, 107 (02) : 315 - 331
  • [28] Lebesgue Constant Minimizing Bivariate Barycentric Rational Interpolation
    Zhao, Qianjin
    Wang, Bingbing
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (01): : 187 - 192
  • [29] Convergence rates of a family of barycentric osculatory rational interpolation
    Jing, Ke
    Kang, Ning
    Zhu, Gongqin
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 53 (1-2) : 169 - 181
  • [30] CONVERGENCE OF LINEAR BARYCENTRIC RATIONAL INTERPOLATION FOR ANALYTIC FUNCTIONS
    Guettel, Stefan
    Klein, Georges
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) : 2560 - 2580