Manipulation of freestanding Au nanogears using an atomic force microscope

被引:23
|
作者
Yun, Yong Ju [1 ]
Ah, Chil Seong [1 ]
Kim, Sanghun [1 ]
Yun, Wan Soo [1 ]
Park, Byong Chon [1 ]
Ha, Dong Han [1 ]
机构
[1] Korea Res Inst Stand & Sci, Div Adv Technol, Taejon 305600, South Korea
关键词
D O I
10.1088/0957-4484/18/50/505304
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have fabricated freestanding nanogears by selectively etching single crystalline Au nanoplates and assembled them tooth to tooth using an atomic force microscope (AFM). The nanogears, with one center hole surrounded by six teeth, are smaller than 500 nm in overall size and 60-70 nm in thickness. We demonstrate that blunt AFM tips on stiff cantilevers are effective for the nondestructive manipulation of ductile and flat nano-objects having large contact areas with the substrate, and we discuss the results on the basis of nanomechanical aspects. We expect that the precise AFM manipulation combined with the etch-based fabrication techniques for the freestanding nanocomponents will be useful in the development and post-repair of sophisticated nanoelectromechanical systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Multiscale model of the manipulation of single atoms on insulating surfaces using an atomic force microscope tip
    Trevethan, Thomas
    Kantorovich, Lev
    Polesel-Maris, Jerome
    Gauthier, Sebastien
    Shluger, Alexander
    PHYSICAL REVIEW B, 2007, 76 (08)
  • [22] Single DNA molecule grafting and manipulation using a combined atomic force microscope and an optical tweezer
    Shivashankar, GV
    Libchaber, A
    APPLIED PHYSICS LETTERS, 1997, 71 (25) : 3727 - 3729
  • [23] Controlled Manipulation of TRAIL into Single Human Colon Cancer Cells Using Atomic Force Microscope
    Qu, Yingmin
    Liu, Jinyun
    Wang, Guoliang
    Song, Zhengxun
    Wang, Zuobin
    Wang, Zuobin
    2017 IEEE INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (3M-NANO), 2017, : 345 - 348
  • [24] Correction of the viscous drag induced errors in macromolecular manipulation experiments using atomic force microscope
    Liu, Runcong
    Roman, Marisa
    Yang, Guoliang
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (06):
  • [25] Active drift compensation applied to nanorod manipulation with an atomic force microscope
    Tranvouez, E.
    Boer-Duchemin, E.
    Comtet, G.
    Dujardin, G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (11):
  • [26] Modeling the Effect of the Relative Humidity on the Manipulation of Nanoparticles with an Atomic Force Microscope
    Li Yang
    Kezhao Bai
    Yunqian Li
    Colloid Journal, 2018, 80 : 339 - 345
  • [27] Atomic force microscope manipulation of Ag atom on the Si(111) surface
    Enkhtaivan, Batnyam
    Oshiyama, Atsushi
    PHYSICAL REVIEW B, 2017, 95 (03)
  • [28] Automated 2-D Nanoparticle Manipulation with an Atomic Force Microscope
    Onal, Cagdas D.
    Ozcan, Onur
    Sitti, Metin
    ICRA: 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-7, 2009, : 403 - 408
  • [29] Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement
    Tong, Lianming
    Zhu, Tao
    Liu, Zhongfan
    APPLIED PHYSICS LETTERS, 2008, 92 (02)
  • [30] High-resolution manipulation of gold nanorods with an atomic force microscope
    Craciun, A. D.
    Donnio, B.
    Gallani, J. L.
    Rastei, M., V
    NANOTECHNOLOGY, 2020, 31 (08)