Verification in incomplete argumentation frameworks

被引:44
|
作者
Baumeister, Dorothea [1 ]
Neugebauer, Daniel [1 ]
Rothe, Joerg [1 ]
Schadrack, Hilmar [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Inst Informat, D-40225 Dusseldorf, Germany
关键词
Abstract argumentation; Argumentation framework; Incomplete knowledge; Verification; Computational complexity; AGGREGATION; COMPLEXITY; DIVISION; DYNAMICS; ATTACK;
D O I
10.1016/j.artint.2018.08.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We tackle the problem of expressing incomplete knowledge in abstract argumentation frameworks originally introduced by Dung [26] In applications, incomplete argumentation frameworks may arise as intermediate states in an elicitation process, or when merging different beliefs about an argumentation framework's state, or in cases where complete information cannot be obtained. We consider two specific models of incomplete argumentation frameworks, one focusing on attack incompleteness and the other on argument incompleteness, and we also provide a general model of incomplete argumentation framework that subsumes both specific models. In these three models, we study the computational complexity of variants of the verification problem with respect to six common semantics of argumentation frameworks: the conflict-free, admissible, stable, complete, grounded, and preferred semantics. We provide a full complexity map covering all three models and these six semantics. Our main result shows that the complexity of verifying the preferred semantics rises from coNP- to Sigma(p)(2)-completeness when allowing uncertainty about either attacks or arguments, or both. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [21] Extension-based semantics for incomplete argumentation frameworks: properties, complexity and algorithms
    Mailly, Jean-Guy
    JOURNAL OF LOGIC AND COMPUTATION, 2023, 33 (02) : 406 - 435
  • [22] Audiences in argumentation frameworks
    Bench-Capon, Trevor J. M.
    Doutre, Sylvie
    Dunne, Paul E.
    ARTIFICIAL INTELLIGENCE, 2007, 171 (01) : 42 - 71
  • [23] Control Argumentation Frameworks
    Dimopoulos, Yannis
    Mailly, Jean-Guy
    Moraitis, Pavlos
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 4678 - 4685
  • [24] Compact Argumentation Frameworks
    Baumann, Ringo
    Dvorak, Wolfgang
    Linsbichler, Thomas
    Strass, Hannes
    Woltran, Stefan
    21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 69 - +
  • [25] Uniform Argumentation Frameworks
    Atkinson, Katie
    Bench-Capon, Trevor
    Dunne, Paul E.
    Computational Models of Argument, 2012, 245 : 165 - 176
  • [26] On the Aggregation of Argumentation Frameworks
    Delobelle, Jerome
    Konieczny, Sebastien
    Vesic, Srdjan
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 2911 - 2917
  • [27] Merging Argumentation Frameworks
    Leite, Lucas
    Alves, Thiago
    Alcantara, Joao
    2015 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2015), 2015, : 110 - 115
  • [28] Ordering Argumentation Frameworks
    Sakama, Chiaki
    Inoue, Katsumi
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2019, 2019, 11726 : 87 - 98
  • [29] Symmetric argumentation frameworks
    Coste-Marquis, S
    Devred, C
    Marquis, P
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2005, 3571 : 317 - 328
  • [30] Value Based Argumentation in Hierarchical Argumentation Frameworks
    Modgil, S.
    COMPUTATIONAL MODELS OF ARGUMENT, 2006, 144 : 297 - 308