Modeling comparison of graphene nanoribbon field effect transistors with single vacancy defect

被引:31
|
作者
Nazari, Atefeh [1 ]
Faez, Rahim [2 ]
Shamloo, Hassan [1 ]
机构
[1] Islamic Azad Univ, Qazvin Branch, Dept Elect Biomed & Mechatron Engn, Qazvin 3419915195, Iran
[2] Sharif Univ Technol, Dept Elect Engn, Tehran 1458889694, Iran
关键词
Armchair monolayer graphene nanoribbon field effect transistor; Single vacancy defect (SV); Non-equilibrium Green's function(NEGF); Real space approach; Tight-binding; Semi classical top of barrier modeling (SCTOBM); QUANTUM TRANSPORT; PERFORMANCE; NANOSCALE; CARBON;
D O I
10.1016/j.spmi.2016.06.008
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this paper, some important circuit parameters of a monolayer armchair graphene 'nanoribbon (GNR) field effect transistor (GNRFET) in different structures are studied. Also, these structures are Ideal with no defect, 1SVGNRFET with one single vacancy defect, and 3SVsGNRFET with three SV defects. Moreover, the circuit parameters are extracted based on Semi Classical Top of Barrier Modeling (SCTOBM) method. The I-V characteristics simulations of Ideal GNRFET, 1SVGNRFET and 3SVsGNRFET are used for comparing with SCTOBM method. These simulations are solved with Poisson-Schrodinger equation self consistently by using Non-Equilibrium Green Function (NEGF) and in the real space approach. The energy band structure of nanoribbon is obtained by using nearest neighbour interactions within an approximation tight-binding method. The modeling results show that 3SVsGNRFET in comparison to 1SVGNRFET has higher transconductance, cut-off frequency, electron average velocity, mobile charge, and quantum capacitance. Also, 3SVsGNRFET has smaller gate, drain and source capacitances than Ideal GNRFET. Furthermore, Drain-induced barrier lowering (DIBL) and sub-threshold swing (SS) of 3SVsGNRFET are smaller than 1SVGNRFET. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:28 / 45
页数:18
相关论文
共 50 条
  • [41] Gate capacitance model for the design of graphene nanoribbon array field-effect transistors
    Son, Myungwoo
    Ki, Hangil
    Kim, Kihyeun
    Chung, Sunki
    Lee, Woong
    Ham, Moon-Ho
    RSC ADVANCES, 2015, 5 (68) : 54861 - 54866
  • [42] Modeling Techniques for Graphene Field-effect Transistors
    Lu, Haiyan
    Wu, Yun
    Huo, Shuai
    Xu, Yuehang
    Kong, Yuechan
    Chen, Tangshen
    2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION PROBLEM-SOLVING (ICCP), 2015, : 373 - 376
  • [43] Graphene Nanoribbon Field-Effect Transistors with Top-Gate Polymer Dielectrics
    Jeong, Beomjin
    Wuttke, Michael
    Zhou, Yazhou
    Muellen, Klaus
    Narita, Akimitsu
    Asadi, Kamal
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (06) : 2667 - 2671
  • [44] Design of quaternary MIN and MAX circuits using graphene nanoribbon field effect transistors
    Basha, Shaik Javid
    Venkatramana, P.
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 3502 - 3506
  • [45] Diluted chirality dependence in edge rough graphene nanoribbon field-effect transistors
    Tseng, F.
    Unluer, D.
    Holcomb, K.
    Stan, M. R.
    Ghosh, A. W.
    APPLIED PHYSICS LETTERS, 2009, 94 (22)
  • [46] Graphene Nanoribbon Tunneling Field-Effect Transistors With a Semiconducting and a Semimetallic Heterojunction Channel
    Da, Haixia
    Lam, Kai-Tak
    Samudra, G.
    Chin, Sai-Kong
    Liang, Gengchiau
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (05) : 1454 - 1461
  • [47] Quantum transport simulation of graphene-nanoribbon field-effect transistors with defects
    Shanmeng Chen
    Maarten L. Van de Put
    Massimo V. Fischetti
    Journal of Computational Electronics, 2021, 20 : 21 - 37
  • [48] An analytical drain current model for graphene nanoribbon tunnel field-effect transistors
    Bao, Jiarui
    Hu, Shuyan
    Hu, Guangxi
    Hu, Laigui
    Liu, Ran
    Zheng, Lirong
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (09)
  • [49] Theoretical Investigation of Graphene Nanoribbon Field-Effect Transistors Designed for Digital Applications
    Harada, Naoki
    Sato, Shintaro
    Yokoyama, Naoki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (09)
  • [50] Room-Temperature Graphene-Nanoribbon Tunneling Field-Effect Transistors
    Wan Sik Hwang
    Pei Zhao
    Sung Geun Kim
    Rusen Yan
    Gerhard Klimeck
    Alan Seabaugh
    Susan K. Fullerton-Shirey
    Huili Grace Xing
    Debdeep Jena
    npj 2D Materials and Applications, 3