Density estimation in the presence of heteroscedastic measurement error

被引:60
|
作者
Staudenmayer, John [1 ]
Ruppert, David [2 ]
Buonaccorsi, John R. [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
B-spline; deconvolution; equivalent kernel; Metropolis-Hastings; observation error; one-way random-effects model; penalized smoothing; posterior mode; small-sigma asymptotics; variance function;
D O I
10.1198/016214508000000328
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider density estimation when the variable of interest is subject to heteroscedastic measurement error. The density is assumed to have a smooth but unknown functional form that we model with a penalized mixture of B-splines. We treat the situation in which multiple mismeasured observations of each variable of interest are observed for at least some of the subjects, and the measurement error is assumed to be additive and normal. The measurement error variance function is modeled with a second penalized mixture of B-splines. The article's main contributions are to address the effects of heteroscedastic measurement error effectively, explain the biases caused by ignoring heteroscedasticity, and present an equivalent kernel for a spline-based density estimator. Derivation of the equivalent kernel may be of independent interest. We use small-sigma asymptotics to approximate the biases incurred by assuming that the measurement error is homoscedastic when it actually is heteroscedastic. The biases incurred by misspecifying heteroscedastic measurement error as homoscedastic can be substantial. We fit the model using Bayesian methods and apply it to an example from nutritional epidemiology and a simulation experiment.
引用
收藏
页码:726 / 736
页数:11
相关论文
共 50 条
  • [21] Robust inference in an heteroscedastic measurement error model
    Mário de Castro
    Manuel Galea
    Journal of the Korean Statistical Society, 2010, 39 : 439 - 447
  • [22] Robust inference in an heteroscedastic measurement error model
    de Castro, Mario
    Galea, Manuel
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2010, 39 (04) : 439 - 447
  • [23] Estimation of heteroscedastic measurement noise variances
    de Brauwere, Anouk
    Pintelon, Rik
    De Ridder, Fjo
    Schoukens, Johan
    Baeyens, Willy
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2007, 86 (01) : 130 - 138
  • [24] Measurement error models and variance estimation in the presence of rounding error effects
    Burr, T.
    Hamada, M. S.
    Cremers, T.
    Weaver, B. P.
    Howell, J.
    Croft, S.
    Vardeman, S. B.
    ACCREDITATION AND QUALITY ASSURANCE, 2011, 16 (07) : 347 - 359
  • [25] Measurement error models and variance estimation in the presence of rounding error effects
    T. Burr
    M. S. Hamada
    T. Cremers
    B. P. Weaver
    J. Howell
    S. Croft
    S. B. Vardeman
    Accreditation and Quality Assurance, 2011, 16 : 347 - 359
  • [26] Estimation of Parameters in the Presence of Model Misspecification and Measurement Error
    Swamy, P. A. V. B.
    Tavlas, George S.
    Hall, Stephen G. F.
    Hondroyiannis, George
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2010, 14 (03):
  • [27] Frontier estimation in the presence of measurement error with unknown variance
    Kneip, Alois
    Simar, Leopold
    Van Keilegom, Ingrid
    JOURNAL OF ECONOMETRICS, 2015, 184 (02) : 379 - 393
  • [28] FINITE POPULATION PARAMETER ESTIMATION IN PRESENCE OF MEASUREMENT ERROR
    HERSON, J
    ROSENBER.S
    BIOMETRICS, 1974, 30 (02) : 380 - 380
  • [29] Density estimation with normal measurement error with unknown variance
    Meister, A
    STATISTICA SINICA, 2006, 16 (01) : 195 - 211
  • [30] Local influence assessment in heteroscedastic measurement error models
    de Castro, Mario
    Galea-Rojas, Manuel
    Bolfarine, Heleno
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (02) : 1132 - 1142