A cubic-order variant of Newton's method for finding multiple roots of nonlinear equations

被引:9
|
作者
Kim, Young Ik [1 ]
Geum, Young Hee [1 ]
机构
[1] Dankook Univ, Dept Appl Math, Cheonan 330714, South Korea
关键词
Multiple root; Order of convergence; Newton's method; Nonlinear equation; Root finding; FAMILY;
D O I
10.1016/j.camwa.2011.04.069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A second-derivative-free iteration method is proposed below for finding a root of a nonlinear equation f (x) = 0 with integer multiplicity m >= 1: x(n+1) = x(n) - f(x(n) - mu f(x(n))/f'(x(n))) + gamma f(x(n))/f'(x(n)), n = 0, 1, 2, .... We obtain the cubic order of convergence and the corresponding asymptotic error constant in terms of multiplicity m, and parameters mu and gamma. Various numerical examples are presented to confirm the validity of the proposed scheme. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1634 / 1640
页数:7
相关论文
共 50 条
  • [22] GRAPHICAL METHOD FOR FINDING ALL ROOTS OF QUADRATIC AND CUBIC EQUATIONS
    BENZIES, JY
    CIVIL ENGINEERING, 1971, 41 (01): : 53 - &
  • [23] MODIFIED NEWTON'S METHODS OF CUBIC CONVERGENCE FOR MULTIPLE ROOTS
    Lee, Siyul
    Kim, Young-Hee
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (03) : 516 - 525
  • [24] Modified Newton's method with third-order convergence and multiple roots
    Frontini, M
    Sormani, E
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 156 (02) : 345 - 354
  • [25] Complex Roots-Finding Method of Nonlinear Equations
    Siwach, Anujeet
    Malhotra, Reetu
    CONTEMPORARY MATHEMATICS, 2024, 5 (03): : 2848 - 2857
  • [26] New family of Chebyshev’s method for finding simple roots of nonlinear equations
    Barrada, Mohammed
    Benkhouya, Reda
    Ziti, Ch.
    Rhattoy, Abdallah
    Engineering Letters, 2020, 28 (04): : 1263 - 1270
  • [27] New Family of Chebyshev's Method for Finding Simple Roots of Nonlinear Equations
    Barrada, M.
    Benkhouya, R.
    Ziti, Ch
    Rhattoy, A.
    ENGINEERING LETTERS, 2020, 28 (04) : 1263 - 1270
  • [28] Modification of Newton-Householder Method for Determining Multiple Roots of Unknown Multiplicity of Nonlinear Equations
    Sariman, Syahmi Afandi
    Hashim, Ishak
    Samat, Faieza
    Alshbool, Mohammed
    MATHEMATICS, 2021, 9 (09)
  • [29] Convergence analysis of a variant of the Newton method for solving nonlinear equations
    Lin, Yiqin
    Bao, Liang
    Jia, Xianzheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (06) : 2121 - 2127
  • [30] Optimization algorithm for Finding Multiple Roots of Systems of Nonlinear Equations
    Cruz Duarte, Jorge
    Amaya Contreras, Ivan
    Correa Cely, Carlos
    INGE CUC, 2013, 9 (01) : 197 - 208