Symbolic Regression with augmented dataset using RuleFit

被引:1
|
作者
de Franca, Fabricio Olivetti [1 ]
机构
[1] Univ Fed ABC, Ctr Math Comp & Cognit CMCC, Heurist & Anal Lab HAL, Santo Andre, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
symbolic regression; regression analysis; data augmentation;
D O I
10.1109/SYNASC57785.2022.00058
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Symbolic Regression models are often associated with transparency and interpretability. The main motivation is their ability to describe nonlinear models balancing accuracy and conciseness. But, in practice, it may generate models that are hard to understand at the same level as opaque models. From another perspective, linear models are guaranteed to be transparent but fail to model nonlinearities and interactions. The algorithm RuleFit uses a tree-based nonlinear model to create meta-features augmenting the dataset, increasing the accuracy of the linear models while maintaining their transparency. In this paper we test whether this augmented dataset can help Symbolic Regression models to find more transparent models without reducing the overall accuracy. The results indicate that the augmented models have a slightly better accuracy on a class of benchmarks while keeping the expression size small and closer to a linear model. As a caveat, the models also tend to become closer to a step function which limits the interpretability of the studied phenomena.
引用
收藏
页码:323 / 326
页数:4
相关论文
共 50 条
  • [31] Multiview Symbolic Regression
    Russeil, Etienne
    de Franca, Fabricio Olivetti
    Malanchev, Konstantin
    Burlacu, Bogdan
    Ishida, Emille E. O.
    Leroux, Marion
    Michelin, Clement
    Moinard, Guillaume
    Gangler, Emmanuel
    PROCEEDINGS OF THE 2024 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2024, 2024, : 961 - 970
  • [32] Parameter identification for symbolic regression using nonlinear least squares
    Kommenda, Michael
    Burlacu, Bogdan
    Kronberger, Gabriel
    Affenzeller, Michael
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2020, 21 (03) : 471 - 501
  • [33] Inferring interpretable models of fragmentation functions using symbolic regression
    Makke, Nour
    Chawla, Sanjay
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2025, 6 (02):
  • [34] Discovering asymptotic expansions for problems in mechanics using symbolic regression
    Abdusalamov, Rasul
    Kaplunov, Julius
    Itskov, Mikhail
    MECHANICS RESEARCH COMMUNICATIONS, 2023, 133
  • [35] Emotional Text-To-Speech in Japanese Using Artificially Augmented Dataset
    Khalifah, Mujahid Jamal A.
    Ptaszynski, Michal
    Masui, Fumito
    IEEE ACCESS, 2024, 12 : 167724 - 167777
  • [36] Parameter identification for symbolic regression using nonlinear least squares
    Michael Kommenda
    Bogdan Burlacu
    Gabriel Kronberger
    Michael Affenzeller
    Genetic Programming and Evolvable Machines, 2020, 21 : 471 - 501
  • [37] Taylor Polynomial Enhancer using Genetic Programming for Symbolic Regression
    Chang, Chi-Hsien
    Chiang, Tu-Chin
    Hsu, Tzu-Hao
    Chuang, Ting-Shuo
    Fang, Wen-Zhong
    Yu, Tian-Li
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 543 - 546
  • [38] Symbolic regression of crop pest forecasting using genetic programming
    Alhadidi, Basim
    Al-Afeef, Alaa
    Al-Hiary, Heba
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2012, 20 : 1332 - 1342
  • [39] Astronomical PSF characterization using grammar evolution and symbolic regression
    Sarmiento, Ricardo
    Baena-Galle, Roberto
    de la Cruz Echeandia, Marina
    Ortega de la Puente, Alfonso
    Girard, Terrence M.
    Casetti-Dinescu, Dana
    Cervantes-Rovira, Alejandro
    SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY VIII, 2024, 13101
  • [40] An Augmented MetiTarski Dataset for Real Quantifier Elimination Using Machine Learning
    Hester, John
    Hitaj, Briland
    Passmore, Grant
    Owre, Sam
    Shankar, Natarajan
    Yeh, Eric
    INTELLIGENT COMPUTER MATHEMATICS, CICM 2023, 2023, 14101 : 297 - 302