THE HOMOLOGY OF THE GROUPOID OF THE SELF-SIMILAR INFINITE DIHEDRAL GROUP

被引:1
|
作者
Ortega, Eduard [1 ]
Sanchez, Alvaro [2 ]
机构
[1] NTNU, Dept Math Sci, NO-7491 Trondheim, Norway
[2] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Barcelona, Spain
关键词
ETALE GROUPOIDS; FULL GROUPS;
D O I
10.7146/math.sc.a-129708
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the K-theory of the C*-algebra associated to the self-similar infinite dihedral group, and the homology of its associated etale groupoid. We see that the rational homology differs from the K-theory, strongly contradicting a conjecture posted by Matui. Moreover, we compute the abelianization of the topological full group of the groupoid associated to the self-similar infinite dihedral group.
引用
收藏
页码:255 / 277
页数:23
相关论文
共 50 条
  • [21] SELF-SIMILAR AUTOMORPHISMS OF A FREE GROUP OF COUNTABLE RANK
    Tomaszewski, Witold
    MATHEMATICA SCANDINAVICA, 2015, 116 (01) : 126 - 140
  • [22] Schreier Graphs for a Self-Similar Action of the Heisenberg Group
    I. Bondarenko
    R. Kravchenko
    Ukrainian Mathematical Journal, 2014, 65 : 1612 - 1618
  • [23] Self-similar random processes and infinite-dimensional configuration spaces
    G. A. Goldin
    U. Moschella
    T. Sakuraba
    Physics of Atomic Nuclei, 2005, 68 : 1675 - 1684
  • [24] Even and Odd Self-Similar Solutions of the Diffusion Equation for Infinite Horizon
    Matyas, Laszlo
    Barna, Imre Ferenc
    UNIVERSE, 2023, 9 (06)
  • [25] From infinite urn schemes to decompositions of self-similar Gaussian processes
    Durieu, Olivier
    Wang, Yizao
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [26] Self-similar random processes and infinite-dimensional configuration spaces
    Goldin, GA
    Moschella, U
    Sakuraba, T
    PHYSICS OF ATOMIC NUCLEI, 2005, 68 (10) : 1675 - 1684
  • [27] Hermitian Metric and the Infinite Dihedral Group
    Bryan Goldberg
    Rongwei Yang
    Proceedings of the Steklov Institute of Mathematics, 2019, 304 : 136 - 145
  • [28] Joint spectrum and the infinite dihedral group
    Rostislav Grigorchuk
    Rongwei Yang
    Proceedings of the Steklov Institute of Mathematics, 2017, 297 : 145 - 178
  • [29] Self-avoiding walks on self-similar structures: finite versus infinite ramification
    Ordemann, A
    Porto, M
    Roman, HE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (38): : 8029 - 8041
  • [30] Self-similar and asymptotically self-similar solutions of nonlinear wave equations
    Hartmut Pecher
    Mathematische Annalen, 2000, 316 : 259 - 281