A 60-GHz Band 2 x 2 Phased-Array Transmitter in 65-nm CMOS

被引:34
|
作者
Chan, Wei L. [1 ]
Long, John R. [1 ]
机构
[1] Delft Univ Technol, Elect Res Lab DIMES, NL-2628 CD Delft, Netherlands
关键词
Active inductor; carrier feedthrough; CMOS; frequency multiplier; I/Q generator; low voltage; millimeter wave; phased array; phase shifter; power amplifier; sideband suppression; transformer coupling; transmitter; tripler; POWER-AMPLIFIER; TRANSCEIVER; SILICON;
D O I
10.1109/JSSC.2010.2077170
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A 60-GHz band 2 x 2 phased-array transmitter implemented in 65-nm bulk CMOS is described. Two-dimensional beam steering in the azimuthal and elevation planes is implemented via LO phase shifting in a transmitter that also supports direct or IF up-conversion. Full current bleeding in the final upconversion mixer suppresses flicker noise, and dynamic LO biasing suppresses carrier feedthrough. The 2.9 x 1.4 mm(2) chip consumes a total of 590 mW from a 1-V supply when driving all four channels at a maximum saturated output power of 11 dBm, with 20 dB gain per transmitter. Carrier leakage varies between -20.5 dBc +/-0.5 dB and sideband rejection is 25 to 28 dBc among the four transmitters when measured on the same die. The measured phase noise is 1.7 +/- 1 dB higher than the theoretical 21.6 dB increase in the phase noise due to 12x frequency multiplication of the injected LO. Maximum power-added efficiency of the transmit amplifier is greater than 16%, and gain is above 17 dB from 54 to 61 GHz.
引用
收藏
页码:2682 / 2695
页数:14
相关论文
共 50 条
  • [1] A 60-GHz Four-Element Beam-Tapering Phased-Array Transmitter With a Phase-Compensated VGA in 65-nm CMOS
    Lee, Joong Geun
    Jang, Tae Hwan
    Park, Geon Ho
    Lee, Hee Sung
    Byeon, Chul Woo
    Park, Chul Soon
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2019, 67 (07) : 2998 - 3009
  • [2] 60-GHz Receiver and Transmitter Front-Ends in 65-nm CMOS
    Karkkainen, Mikko
    Varonen, Mikko
    Sandstrom, Dan
    Halonen, Kari A. I.
    2009 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, VOLS 1-3, 2009, : 577 - 580
  • [3] 60-GHz low-power OOK transmitter in 65-NM CMOS technology
    Lee, Hui Dong
    Kang, Tae Young
    Lee, Moon-Sik
    Park, Bonghyuk
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2015, 57 (08) : 1977 - 1980
  • [4] Miniaturized Wideband Coupler for 60-GHz Band in 65-nm CMOS Technology
    Chew, Peng Siew
    Ma, Kaixue
    Kong, Zhi Hui
    Yeo, Kiat Seng
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2018, 28 (12) : 1089 - 1091
  • [5] A 65 nm CMOS Transmitter Chain for Scalable 28 GHz Phased-Array Systems
    Sayag, Avraham
    Melamed, Itamar
    Cohen, Emanuel
    PROCEEDINGS OF THE 2020 IEEE TEXAS SYMPOSIUM ON WIRELESS AND MICROWAVE CIRCUITS AND SYSTEMS (WMCS), 2020,
  • [6] A 60-GHz 2x2 Phased-Array Transmitter using Injection-Locked Oscillator in 0.18 μm CMOS Technology
    Huang, Fan-Hsiu
    Chen, Chin-Cheng
    Chang, Hong-Yeh
    Hsin, Yue-Ming
    2010 ASIA-PACIFIC MICROWAVE CONFERENCE, 2010, : 538 - 541
  • [7] A 60-GHz SPST Switch in 65-nm CMOS Technology
    Apriyana, Anak Agung Alit
    Zhang, Yue Ping
    2014 IEEE INTERNATIONAL SYMPOSIUM ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY (RFIT): SILICON TECHNOLOGY HEATS UP FOR THZ, 2014,
  • [8] An active CMOS one-to-four power splitter for 60-GHz phased-array transmitter
    Department of Electrical Engineering and Graduate Institute of Communication Engineering, National Taiwan University, Taipei 10617, Taiwan
    IEEE MTT S Int Microwave Symp Dig, 1600,
  • [9] A fully-integrated 60-GHz 8-element phased-array transceiver with embedded antenna T/R switch in 65-nm CMOS
    Feng, Jing
    Duan, Haipeng
    Zhang, Tao
    Lu, Lin
    Luo, Lei
    Liang, Yue
    Chen, Xin
    Cheng, Depeng
    He, Long
    Wu, Xu
    Fan, Xiangning
    Li, Lianming
    MICROELECTRONICS JOURNAL, 2024, 154
  • [10] A Full X-Band Phased-Array Transmit/Receive Module Chip in 65-nm CMOS Technology
    Hyohyun Nam
    Van-Viet Nguyen
    Van-Son Trinh
    Song, Jeong-Moon
    Lee, Bok-Hyung
    Park, Jung-Dong
    IEEE ACCESS, 2020, 8 : 76182 - 76192