Finite Speed of Propagation for the Thin-Film Equation in Spherical Geometry

被引:0
|
作者
Taranets, R. M. [1 ]
机构
[1] Ukrainian Natl Acad Sci, Inst Appl Math & Mech, Sloviansk, Ukraine
关键词
NONNEGATIVE SOLUTIONS;
D O I
10.1007/s11253-019-01690-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a doubly degenerate thin-film equation obtained in modeling the flows of viscous coatings on spherical surfaces has a finite speed of propagation for nonnegative strong solutions and, hence, there exists an interface or a free boundary separating the regions, where the solution u > 0 and u = 0. By using local entropy estimates, we also establish the upper bound for the rate of propagation of the interface.
引用
收藏
页码:956 / 969
页数:14
相关论文
共 50 条
  • [41] Software tools speed optical thin-film design
    Kruschwitz, JDT
    LASER FOCUS WORLD, 2003, 39 (06): : 157 - +
  • [42] Microscopic analysis of thin-film evaporation on spherical pore surfaces
    Montazeri, Kimia
    Lee, Hyoungsoon
    Won, Yoonjin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 122 : 59 - 68
  • [43] Transverse fracture in thin-film coatings under spherical indentation
    Chai, H
    ACTA MATERIALIA, 2005, 53 (02) : 487 - 498
  • [44] Thin-film microlens arrays with non-spherical elements
    Grunwald, R
    Woggon, S
    Ehlert, R
    Reinecke, W
    PURE AND APPLIED OPTICS, 1997, 6 (06): : 663 - 671
  • [45] GREENS FUNCTIONS FOR ONE-SPEED TRANSPORT EQUATION IN SPHERICAL GEOMETRY
    ERDMANN, RC
    SIEWERT, CE
    JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (01) : 81 - &
  • [46] Pressure-dipole solutions of the thin-film equation
    Bowen, M.
    Witelski, T. P.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2019, 30 (02) : 358 - 399
  • [47] A thin-film equation for viscoelastic liquids of Jeffreys type
    M. Rauscher
    A. Münch
    B. Wagner
    R. Blossey
    The European Physical Journal E, 2005, 17 : 373 - 379
  • [48] RATE EQUATION APPROACHES TO THIN-FILM NUCLEATION KINETICS
    VENABLES, JA
    PHILOSOPHICAL MAGAZINE, 1973, 27 (03): : 697 - 738
  • [49] Soliton solutions of thin-film ferroelectric materials equation
    Sadaf, Maasoomah
    Arshed, Saima
    Akram, Ghazala
    ul Nabi, Andleeb
    Ahmad, Hijaz
    Askar, Sameh
    RESULTS IN PHYSICS, 2024, 58
  • [50] Convergence to Equilibrium for a Thin-Film Equation on a Cylindrical Surface
    Burchard, Almut
    Chugunova, Marina
    Stephens, Benjamin K.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (04) : 585 - 609