Combining KPCA with support vector machine for time series forecasting

被引:0
|
作者
Cao, LJ [1 ]
Chua, KS [1 ]
Guan, LK [1 ]
机构
[1] Inst High Performance Comp, Singapore 117528, Singapore
关键词
support vector machine (SVM); kernel principal component analysis (KPCA);
D O I
暂无
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Recently, support vector machine (SVM) has become a popular tool in time series forecasting. In developing a successful SVM forecastor, the first important step is feature extraction. This paper applies kernel principal component analysis (KPCA) to SVM for feature extraction. KPCA is a nonlinear PCA developed by using the kernel method. It firstly transforms the original inputs into a high dimensional feature space and then calculates PCA in the high dimensional feature space. By examining the sunspot data and one real futures contract, the experiment shows that SVM by feature extraction using KPCA performs much better than that without feature extraction. In comparison with PCA, there is also superior performance in KPCA.
引用
收藏
页码:325 / 329
页数:5
相关论文
共 50 条
  • [21] Multi-scale least squares support vector machine for financial time series forecasting
    Wei, Liwei
    Chen, Zhenyu
    Xie, Qiwei
    Li, Jianping
    PROCEEDINGS OF JOURNAL PUBLICATION MEETING (2007), 2007, : 54 - 58
  • [22] Vector SHAP Values for Machine Learning Time Series Forecasting
    Choi, Ji Eun
    Shin, Ji Won
    Shin, Dong Wan
    JOURNAL OF FORECASTING, 2025, 44 (02) : 635 - 645
  • [23] Financial time series forecasting using support vector machines
    Kim, KJ
    NEUROCOMPUTING, 2003, 55 (1-2) : 307 - 319
  • [24] ε-Descending Support Vector Machines for Financial Time Series Forecasting
    Francis E. H. Tay
    L. J. Cao
    Neural Processing Letters, 2002, 15 : 179 - 195
  • [25] Modified support vector machines in financial time series forecasting
    Tay, FEH
    Cao, LJ
    NEUROCOMPUTING, 2002, 48 : 847 - 861
  • [26] Support Vector Machines through Financial Time Series Forecasting
    Kewat, Pooja
    Sharma, Roopesh
    Singh, Upendra
    Itare, Ravikant
    2017 INTERNATIONAL CONFERENCE OF ELECTRONICS, COMMUNICATION AND AEROSPACE TECHNOLOGY (ICECA), VOL 2, 2017, : 471 - 477
  • [27] Application of support vector machines in financial time series forecasting
    Tay, FEH
    Cao, LJ
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2001, 29 (04): : 309 - 317
  • [28] Time Series Forecasting with Volume Weighted Support Vector Machines
    Zbikowski, Kamil
    BEYOND DATABASES, ARCHITECTURES AND STRUCTURES, BDAS 2014, 2014, 424 : 250 - 258
  • [29] ε-descending support vector machines for financial time series forecasting
    Tay, FEH
    Cao, LJ
    NEURAL PROCESSING LETTERS, 2002, 15 (02) : 179 - 195
  • [30] Time series forecasting by a seasonal support vector regression model
    Pai, Ping-Feng
    Lin, Kuo-Ping
    Lin, Chi-Shen
    Chang, Ping-Teng
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (06) : 4261 - 4265