A Markov chain model for traffic equilibrium problems

被引:2
|
作者
Mastroeni, G [1 ]
机构
[1] Dept Math, I-56127 Pisa, Italy
来源
RAIRO-OPERATIONS RESEARCH | 2002年 / 36卷 / 03期
关键词
traffic assignment problems; Markov chains; network flows;
D O I
10.1051/ro:2003003
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a stochastic approach in order to define an equilibrium model for a traffic-network problem. In particular, we assume a Markovian behaviour of the users in their movements throughout the zones of the traffic area. This assumption turns out to be effective at least in the context of urban traffic,where,in genera l,the users tend to travel by choosing the path they find more convenient and not necessarily depending on the already travelled part. The developed model is a homogeneous Markov chain, whose stationary distributions (if any) characterize the equilibrium.
引用
收藏
页码:209 / 226
页数:18
相关论文
共 50 条
  • [32] Research on algorithm of traffic equilibrium model
    Liu, Jingxing
    Ma, Jun
    Song, Xuelao
    Harbin Jianzhu Daxue Xuebao/Journal of Harbin University of Civil Engineering and Architecture, 2000, 33 (04): : 105 - 107
  • [33] Application of equilibrium traffic flow model
    Ilgakojyte-Barariene, J
    Marksaitis, D
    Transport Means 2005, Proceedings, 2005, : 59 - 61
  • [34] A Simulation and Prediction Model for Internet Traffic and QoS based on 1-Step Markov-Chain
    Chiang, Johannes K.
    Lin, Yao-Hung
    2014 UKSIM-AMSS 16TH INTERNATIONAL CONFERENCE ON COMPUTER MODELLING AND SIMULATION (UKSIM), 2014, : 468 - 473
  • [35] Kinematic wave-oriented Markov Chain model to capture the spatiotemporal correlations of coupled traffic states
    Belezamo, Baloka
    Wu, Xin
    Avci, Cafer
    Zhou, Xuesong
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 2343 - 2348
  • [36] Assessment Model Basel on Markov Chain
    Ma Huiqun
    Liu Ling
    Chen Tao
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 5, PROCEEDINGS, 2008, : 602 - 605
  • [37] Incremental multivariate Markov chain model
    Yang, Chuan-sheng
    Zheng, Yu-jia
    Wang, Chao
    JOURNAL OF ENGINEERING-JOE, 2018, (16): : 1433 - 1435
  • [38] A Markov chain model of coalescence with recombination
    Simonsen, KL
    Churchill, GA
    THEORETICAL POPULATION BIOLOGY, 1997, 52 (01) : 43 - 59
  • [39] A Markov chain model for geographical accessibility
    Thiede, Renate N.
    Fabris-Rotelli, Inger N.
    Debba, Pravesh
    Cleghorn, Christopher W.
    SPATIAL STATISTICS, 2023, 55
  • [40] A Markov chain model of tornadic activity
    Drton, M
    Marzban, C
    Guttorp, P
    Schaefer, JT
    MONTHLY WEATHER REVIEW, 2003, 131 (12) : 2941 - 2953