Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: Dopant incorporation mechanism

被引:28
|
作者
Sher, Meng-Ju [1 ]
Mangan, Niall M. [2 ]
Smith, Matthew J. [3 ]
Lin, Yu-Ting [2 ]
Marbach, Sophie [2 ,4 ]
Schneider, Tobias M. [2 ,5 ]
Gradecak, Silvija [3 ]
Brenner, Michael P. [2 ]
Mazur, Eric [1 ,2 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Ecole Normale Super, ICFP, Dept Phys, F-75005 Paris, France
[5] Ecole Polytech Fed Lausanne, Emergent Complex Phys Syst Lab ECPS, CH-1015 Lausanne, Switzerland
基金
美国国家科学基金会;
关键词
ALLOY SOLIDIFICATION; GROUP-III; IRRADIATION; INTERFACE; SULFUR;
D O I
10.1063/1.4914520
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we examine the fundamental processes that occur during femtosecond-laser hyperdoping of silicon with a gas-phase dopant precursor. We probe the dopant concentration profile as a function of the number of laser pulses and pressure of the dopant precursor (sulfur hexafluoride). In contrast to previous studies, we show the hyperdoped layer is single crystalline. From the dose dependence on pressure, we conclude that surface adsorbed molecules are the dominant source of the dopant atoms. Using numerical simulation, we estimate the change in flux with increasing number of laser pulses to fit the concentration profiles. We hypothesize that the native oxide plays an important role in setting the surface boundary condition. As a result of the removal of the native oxide by successive laser pulses, dopant incorporation is more efficient during the later stage of laser irradiation. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A reversed trend in emissions of SF6 into the atmosphere?
    Maiss, M
    Brenninkmeijer, CAM
    NON-CO2 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL AND IMPLEMENTATION, 2000, : 199 - 204
  • [32] Silicon nanofibers formed at room temperature following laser irradiation of silicon in SF6
    Warrender, Jeffrey M.
    Hudspeth, Quentin
    Chow, Philippe K.
    Bartolucci, Stephen F.
    Maurer, Joshua A.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [33] Improving the Processing Efficiency of Femtosecond Laser Sulfur Hyperdoping of Silicon by Diffractive Beam Shaping
    Mc Kearney, Patrick
    Lebershausen, Ingo
    Paulus, Simon
    Kontermann, Stefan
    JOURNAL OF LASER MICRO NANOENGINEERING, 2023, 18 (02): : 72 - 76
  • [34] MECHANISM IN SF6 INFRARED PHOTOLYSIS
    DUPRE, J
    PINSON, P
    DUPREMAQUAIRE, J
    MEYER, C
    BARCHEWITZ, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE C, 1976, 283 (07): : 311 - 313
  • [35] LASER ISOTOPE SEPARATION IN SF6
    LIN, ST
    LEE, SM
    RONN, AM
    CHEMICAL PHYSICS LETTERS, 1978, 53 (02) : 260 - 265
  • [36] Chalcogen doping of silicon via intense femtosecond-laser irradiation
    Sheehy, Michael A.
    Tull, Brian R.
    Friend, Cynthia M.
    Mazur, Eric
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2007, 137 (1-3): : 289 - 294
  • [37] LASER INTERFEROMETRY OF SF6 CORONAS
    LAMB, DW
    WOOLSEY, GA
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1995, 28 (10) : 2077 - 2082
  • [38] Investigation of the sulfur doping profile in femtosecond-laser processed silicon
    Guenther, Kay-Michael
    Gimpel, Thomas
    Kontermann, Stefan
    Schade, Wolfgang
    APPLIED PHYSICS LETTERS, 2013, 102 (20)
  • [39] High-concentration F-incorporated ZnO thin films doped via femtosecond-laser hyperdoping
    Liu, Yaoyao
    Jiang, Shuming
    Zhou, Xu
    Xia, Chengtao
    Wu, Qiang
    Ma, Xiangyang
    Chen, Lu
    Yao, Jianghong
    Xu, Jingjun
    SURFACES AND INTERFACES, 2023, 42
  • [40] Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres
    Fowlkes, JD
    Pedraza, AJ
    Lowndes, DH
    APPLIED PHYSICS LETTERS, 2000, 77 (11) : 1629 - 1631