Technique for improving detection of WSR-88D mesocyclone signatures by increasing angular sampling

被引:0
|
作者
Wood, VT
Brown, RA
Sirmans, D
机构
[1] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA
[2] Syst Technol Associates Inc, Norman, OK USA
关键词
D O I
10.1175/1520-0434(2001)016<0177:TFIDOW>2.0.CO;2
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Doppler velocity signature of a thunderstorm mesocyclone becomes increasingly degraded as distance from the radar increases. Degradation is due to the broadening of the radar beam with range relative to the size of the mesocyclone. Using a model mesocyclone and a simulated WSR-88D Doppler radar, a potential approach for improving the detection of mesocyclones is investigated. The approach involves decreasing the azimuthal sampling interval from the conventional 1.0 degrees to 0.5 degrees. Using model mesocyclones that cover the spread of expected mesocyclone sizes and strengths. simulations show that stronger mesocyclone signatures consistently are produced when radar data are collected at 0.5 degrees azimuthal increments. Consequently, the distance from the radar at which a mesocyclone of a given strength and size can be detected increases by an average of at least 50% when data are collected using 0.5 degrees azimuthal increments, The simulated findings are tested using Archive Level I (time series) data collected by the WSR-88D Operational Support Facility's KCRI radar during the Oklahoma-Kansas tornado outbreak of 3 May 1999. With the availability of time series data, an Archive Level II dataset was produced for both 1.0 degrees and 0.5 degrees azimuthal intervals. One-third of the mesocyclone signatures collected using 0.5 degrees azimuthal intervals were 10% to over 50% stronger than their 1.0 degrees azimuthal interval counterparts.
引用
收藏
页码:177 / 184
页数:8
相关论文
共 50 条
  • [21] Simulated WSR-88D Velocity and Reflectivity Signatures of Numerically Modeled Tornadoes
    Wood, Vincent T.
    Brown, Rodger A.
    Dowell, David C.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2009, 26 (05) : 876 - 893
  • [22] Simulated WSR-88D velocity and reflectivity signatures of numerically modeled tornadoes
    Wood, Vincent T.
    Brown, Rodger A.
    Dowell, David C.
    Journal of Atmospheric and Oceanic Technology, 2009, 26 (05): : 876 - 893
  • [23] An assessment of the performance of the WSR-88D mesocyclone detection algorithm during Tropical Storm Bertha - 12-13 July 1996
    Stuart, NA
    Cobb, HD
    22ND CONFERENCE ON HURRICANES AND TROPICAL METEOROLOGY, 1997, : 672 - 674
  • [24] An update on the WSR-88D operational support facility implementation of open systems architecture into the WSR-88D system
    Crum, TD
    Reed, JR
    14TH INTERNATIONAL CONFERENCE ON INTERACTIVE INFORMATION AND PROCESSING SYSTEM (IIPS) FOR METEOROLOGY, OCEANOGRAPHY, AND HYDROLOGY, 1998, : 235 - 237
  • [25] Use of WSR-88D in waterspout nowcasting
    Collins, WG
    18TH CONFERENCE ON SEVERE LOCAL STORMS, 1996, : 613 - 617
  • [26] The radar echo classifier for the WSR-88D
    Kessinger, C
    VanAndel, J
    17TH INTERNATIONAL CONFERENCE ON INTERACTIVE INFORMATION AND PROCESSING SYSTEMS (IIPS) FOR METEOROLOGY, OCEANOGRAPHY, AND HYDROLOGY, 2001, : 137 - 141
  • [27] Calibrating differential reflectivity on the WSR-88D
    Zrnic, Dusan S.
    Melnikov, Valery M.
    Carter, John K.
    Journal of Atmospheric and Oceanic Technology, 2006, 23 (07): : 944 - 951
  • [28] Evaluating the performance of WSR-88D severe storm detection algorithms
    Witt, A
    Eilts, MD
    Stumpf, GJ
    Mitchell, ED
    Johnson, JT
    Thomas, KW
    WEATHER AND FORECASTING, 1998, 13 (02) : 513 - 518
  • [29] AP clutter mitigation in the WSR-88D
    Pratte, F
    Ecoff, D
    VanAndel, J
    Keeler, RJ
    28TH CONFERENCE ON RADAR METEOROLOGY, 1997, : 504 - 505
  • [30] Automated detection of the bright band using WSR-88D data
    Gourley, JJ
    Calvert, CM
    WEATHER AND FORECASTING, 2003, 18 (04) : 585 - 599