Thermal conductivity of dry anatase and rutile nano-powders and ethylene and propylene glycol-based TiO2 nanofluids

被引:83
|
作者
Cabaleiro, D. [1 ]
Nimo, J. [1 ]
Pastoriza-Gallego, M. J. [1 ]
Pineiro, M. M. [1 ]
Legido, J. L. [1 ]
Lugo, L. [1 ]
机构
[1] Univ Vigo, Fac Ciencias, Dept Fis Aplicada, E-36310 Vigo, Spain
来源
关键词
TiO2; nanofluid; Anatase; Rutile; Ethylene glycol; Propylene glycol; Thermal conductivity; HEAT-TRANSFER; THERMOPHYSICAL PROPERTIES; ABSOLUTE MEASUREMENTS; PARTICLE-SIZE; NANOPARTICLES; DIFFUSIVITY; VISCOSITY; DENSITY;
D O I
10.1016/j.jct.2014.12.001
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal conductivity behaviour was studied for two TiO2 nano-powders with different nanocrystalline structures, viz. anatase and rutile, as well as nanofluids formulated as dispersions of these two oxides up to volume concentrations of 8.5% in two different glycols, viz. ethylene and propylene glycol. Because it is known that titanium dioxide can exhibit three different crystalline structures, the dry nano-powders were analysed using X-ray Diffraction to determine the nanocrystalline structure of the powders. Two different techniques were employed in the thermal conductivity study of the materials. Dry nanopowders, with and without compaction, were analysed at room temperature by using a device based on the guarded heat flow meter method. Nanofluids and base fluids were studied with a transient hot wire technique over the temperature range from (283.15 to 343.15) K. The base fluid propylene glycol was measured by using both techniques in order to verify the good agreement between both sets of results. The experimental measurements presented in this work were compared with other literature data for TiO2 nanofluids in order to understand the thermal conductivity enhancement as a function of nanoparticle concentration. Different theoretical or semi-theoretical approaches such as Maxwell, Penas et al., Yu-Choi were evaluated comparing with our experimental values. A parallel model was used to predict thermal conductivities employing experimental values for dry nanopowder. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 50 条
  • [21] MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles
    Xie, Huaqing
    Yu, Wei
    Chen, Wei
    JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2010, 5 (05) : 463 - 472
  • [22] Room temperature photoluminescence of anatase and rutile TiO2 powders
    Kernazhitsky, L.
    Shymanovska, V.
    Gavrilko, T.
    Naumov, V.
    Fedorenko, L.
    Kshnyakin, V.
    Baran, J.
    JOURNAL OF LUMINESCENCE, 2014, 146 : 199 - 204
  • [23] Thermal Conductivity Enhancement of Ethylene Glycol based Nanofluids
    Ahmad, Fahad
    Bhatti, Matloob Hussain
    ul Hassan, Masood
    Rafiq, Muhammad Aftab
    2016 13TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2016, : 21 - 28
  • [24] Accurate prediction of thermal conductivity of ethylene glycol-based hybrid nanofluids using artificial intelligence techniques
    Jamei, Mehdi
    Pourrajab, Rashid
    Ahmadianfar, Iman
    Noghrehabadi, Aminreza
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2020, 116 (116)
  • [25] Thermal Conductivity and Photothermal Conversion Performance of Ethylene Glycol-Based Nanofluids Containing Multiwalled Carbon Nanotubes
    Nguyen Trong Tam
    Pham Van Trinh
    Nguyen Ngoc Anh
    Nguyen Tuan Hong
    Phan Ngoc Hong
    Phan Ngoc Minh
    Bui Hung Thang
    JOURNAL OF NANOMATERIALS, 2018, 2018
  • [26] Effect of Particle Size on the Thermal Conductivity of Water/Ethylene Glycol-based Al2O3 Nanofluids
    Choi, Tae Jong
    Kim, Soo Bin
    Jang, Seok Pil
    Jung, Dae Soo
    Lim, Hyung Mi
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2018, 42 (03) : 169 - 175
  • [27] Thermal conductivity, rheological behaviour and density of non-Newtonian ethylene glycol-based SnO2 nanofluids
    Mariano, Alejandra
    Jose Pastoriza-Gallego, Maria
    Lugo, Luis
    Camacho, Alberto
    Canzonieri, Salvador
    Pineiro, Manuel M.
    FLUID PHASE EQUILIBRIA, 2013, 337 : 119 - 124
  • [28] Tailoring the viscosity of water and ethylene glycol based TiO2 nanofluids
    Abdullah, Abu Musa
    Chowdhury, Aminur Rashid
    Yang, Yingchen
    Vasquez, Horacio
    Moore, H. Justin
    Parsons, Jason G.
    Lozano, Karen
    Gutierrez, Jose J.
    Martirosyan, Karen S.
    Uddin, M. Jasim
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 297
  • [29] Effect of size of multiwalled carbon nanotubes on thermal conductivity and viscosity of ethylene glycol-based nanofluids for solar thermal applications
    Dosodia, Abhishek
    Vadapalli, Srinivas
    Jain, Amitabh Kumar
    Sanduru, Bhanuteja
    Mukkamala, Saratchandra Babu
    PHYSICS OF FLUIDS, 2023, 35 (09)
  • [30] The formation behavior of thermal sprayed TiO2 coatings using agglomerated nano-powders
    Yasuoka, J
    Nakade, K
    Ohmori, A
    Thermal Spray 2004: Advances in Technology and Application, Proceedings, 2004, : 820 - 824