Many-core acceleration of the first-principles all-electron quantum perturbation calculations

被引:2
|
作者
Shang, Honghui [1 ]
Duan, Xiaohui [3 ]
Li, Fang [2 ]
Zhang, Libo [2 ]
Xu, Zhiqian [1 ]
Liu, Kan [3 ]
Luo, Haiwen [1 ]
Ji, Yingrui [1 ]
Zhao, Wenxuan [1 ]
Xue, Wei [3 ]
Chen, Li [1 ]
Zhang, Yunquan [1 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing, Peoples R China
[2] Natl Supercomp Ctr Wuxi, Wuxi, Jiangsu, Peoples R China
[3] Tsinghua Univ, Beijing, Peoples R China
关键词
Density-functional perturbation theory; Many-core architecture; Linear scaling; MPI; Numeric atomic orbitals; DENSITY; DERIVATIVES; DYNAMICS;
D O I
10.1016/j.cpc.2021.108045
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The first-principles quantum perturbation theory, also called density-functional perturbation theory(DFPT), is the state-of-the-art formalism to directly link the experimental response properties of the materials with the quantum modeling of the electrons. Here in this work, we present an implementation of all-electron DFPT for massively parallel Sunway many-core architectures to accelerate DFPT calculation. We have paid special attention to the calculation of the response density matrix, the realspace integration of the response density as well as the response Hamiltonian matrix. We also employ the fast and massively parallel linear scaling scheme together with the load balance algorithm for the DFPT calculations to improve the scalability. Using the above approaches, the accurate first-principles quantum perturbation calculations can be extended over millions of cores. (C) 2021 Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations
    de Wijs, G. A.
    Laskowski, R.
    Blaha, P.
    Havenith, R. W. A.
    Kresse, G.
    Marsman, M.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (06):
  • [42] Quantum length dependence of conductance in oligomers: First-principles calculations
    Zhou, Y. X.
    Jiang, F.
    Chen, H.
    Note, R.
    Mizuseki, H.
    Kawazoe, Y.
    PHYSICAL REVIEW B, 2007, 75 (24)
  • [43] First-principles thousand-atom quantum dot calculations
    Wang, LW
    Li, JB
    PHYSICAL REVIEW B, 2004, 69 (15) : 153302 - 1
  • [44] Carbon string structures: First-principles calculations of quantum conductance
    Senger, RT
    Tongay, S
    Dag, S
    Durgun, E
    Ciraci, S
    PHYSICAL REVIEW B, 2005, 71 (23)
  • [45] A quantum fluid of metallic hydrogen suggested by first-principles calculations
    Bonev, SA
    Schwegler, E
    Ogitsu, T
    Galli, G
    NATURE, 2004, 431 (7009) : 669 - 672
  • [46] Magnetic properties of quantum corrals from first-principles calculations
    Lazarovits, B
    Ujfalussy, B
    Szunyogh, L
    Györffy, BL
    Weinberger, P
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (13) : S1037 - S1048
  • [47] Real-time electron dynamics by first-principles calculations
    Miyamoto, Y
    Sugino, O
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1999, 35 : S11 - S16
  • [48] First-principles calculations of hot-electron lifetimes in metals
    Campillo, I
    Silkin, VM
    Pitarke, JM
    Chulkov, EV
    Rubio, A
    Echenique, PM
    PHYSICAL REVIEW B, 2000, 61 (20) : 13484 - 13492
  • [49] First-principles calculations as a tool for structure validation in electron crystallography
    Weirich, TE
    ACTA CRYSTALLOGRAPHICA SECTION A, 2004, 60 : 75 - 81
  • [50] Electronic stopping power from first-principles calculations with account for core electron excitations and projectile ionization
    Ojanpera, Ari
    Krasheninnikov, Arkady V.
    Puska, Martti
    PHYSICAL REVIEW B, 2014, 89 (03):