Iterative learning control: quantifying the effect of output noise

被引:18
|
作者
Owens, D. H. [1 ]
Liu, S. [1 ]
机构
[1] Univ Sheffield, Automat Control & Syst Engn Dept, Sheffield S1 3JD, S Yorkshire, England
来源
IET CONTROL THEORY AND APPLICATIONS | 2011年 / 5卷 / 02期
关键词
OPTIMIZATION; ROBOTS;
D O I
10.1049/iet-cta.2009.0320
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fixed parameter iterative learning control (ILC) for linear-time invariant, single-input single-output systems subject to output noise is analysed with the intent of predicting the expectation of the underlying 'noise-free' mean square error (Euclidean norm) of the time series on each iteration. Explicit formulae are obtained in terms of the 'lifted' matrix models of the plant. Computational experiments are used to confirm the correctness of the proposed properties. Finally, frequency domain formulae are derived to provide insight into links between plant characteristics, noise spectra and other ILC parameters, and illustrated by application to the inverse-model-based ILC algorithm.
引用
收藏
页码:379 / 388
页数:10
相关论文
共 50 条
  • [21] Iterative Machine Learning for Output Tracking
    Devasia, Santosh
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (02) : 516 - 526
  • [22] Learning Speed Enhancement of Iterative Learning Control with Advanced Output Data based on Parameter Estimation
    Jeong, G. -M.
    Ji, S. -H.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2017, 12 (03) : 323 - 329
  • [23] Iterative Learning Control with Advanced Output Data Using an Estimation of the Impulse Response
    Jeong, Gu-Min
    Ji, Sang-Hoon
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (06) : 1488 - 1491
  • [24] An Iterative Learning Control Synthesis for Nonlinear Systems with Hard Input and Output Constraints
    Sebastian, Gijo
    Tan, Ying
    Oetomo, Denny
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2019, : 1632 - 1637
  • [25] Robust Conditions for Iterative Learning Control in State Feedback and Output Injection Paradigm
    Alsubaie, Muhammad A.
    Alhajri, Mubarak K. H.
    Altowaim, Tarek S.
    Salamah, Salem H.
    JOURNAL OF CONTROL SCIENCE AND ENGINEERING, 2019, 2019
  • [26] Iterative Learning Control for Output Tracking of Nonlinear Systems With Unavailable State Information
    Li, Xuefang
    Shen, Dong
    Ding, Beichen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (09) : 5085 - 5092
  • [27] Output. zeroing and iterative learning control for 3 link acrobat robot
    Watabe, T
    Yamakita, M
    Mita, T
    Ohta, M
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 2579 - 2584
  • [28] Boundary Iterative Learning Control of a Flexible Riser With Input Saturation and Output Constraint
    Liu, Yu
    Wang, Yinna
    Mei, Yanfang
    Wu, Yilin
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (11): : 7044 - 7052
  • [29] Output Information Based Iterative Learning Control Law Design With Experimental Verification
    Hladowski, Lukasz
    Galkowski, Krzysztof
    Cai, Zhonglun
    Rogers, Eric
    Freeman, Chris T.
    Lewin, Paul L.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2012, 134 (02):
  • [30] Iterative learning control with time-partitioned update for collaborative output tracking
    Devasia, Santosh
    AUTOMATICA, 2016, 69 : 258 - 264