Multi-scale Dynamic Network for Temporal Action Detection

被引:2
|
作者
Ren, Yifan [1 ,2 ]
Xu, Xing [1 ,2 ]
Shen, Fumin [1 ,2 ]
Wang, Zheng [1 ,2 ]
Yang, Yang [1 ,2 ]
Shen, Heng Tao [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Ctr Future Media, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Temporal Action Detection; Dynamic Filters; Multi-scale Features;
D O I
10.1145/3460426.3463613
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, as the fundamental task in video understanding, Temporal Action Detection is attracting extensive attention. Most existing approaches use the same model parameters to process all input videos, which are not adaptive to the input video during the inference stage. In this paper, we propose a novel model termed Multi-scale Dynamic Network (MDN) to tackle this problem. The proposed MDN model incorporates multiple Multi-scale Dynamic Modules (MDMs). Each MDM can generate video-specific and segment-specific convolution kernels based on video content from different scales and adaptively capture rich semantic information for the prediction. Besides, we also design a new Edge Suppression Loss (ESL) function for MDN to pay more attention to hard examples. Extensive experiments conducted on two popular benchmarks ActivityNet-1.3 and THUMOS-14 show that the proposed MDN model achieves the state-of-the-art performance.
引用
收藏
页码:267 / 275
页数:9
相关论文
共 50 条
  • [31] Deep Siamese Multi-scale Convolutional Network for Change Detection in Multi-temporal VHR Images
    Chen, Hongruixuan
    Wu, Chen
    Du, Bo
    Zhang, Liangpei
    2019 10TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2019,
  • [32] Truncated attention-aware proposal networks with multi-scale dilation for temporal action detection
    Li, Ping
    Cao, Jiachen
    Yuan, Li
    Ye, Qinghao
    Xu, Xianghua
    PATTERN RECOGNITION, 2023, 142
  • [33] Dynamic multi-scale spatial-temporal graph convolutional network for traffic flow prediction
    Gao, Ming
    Du, Zhuoran
    Qin, Hongmao
    Wang, Wei
    Jin, Guangyin
    Xie, Guotao
    KNOWLEDGE-BASED SYSTEMS, 2024, 305
  • [34] Dynamic multi-scale spatial-temporal graph convolutional network for traffic flow prediction
    Hu, Na
    Zhang, Dafang
    Xie, Kun
    Liang, Wei
    Li, Kuan-Ching
    Zomaya, Albert Y.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 323 - 332
  • [35] A Dynamic Multi-Scale Network for EEG Signal Classification
    Zhang, Guokai
    Luo, Jihao
    Han, Letong
    Lu, Zhuyin
    Hua, Rong
    Chen, Jianqing
    Che, Wenliang
    FRONTIERS IN NEUROSCIENCE, 2021, 14
  • [36] MALT: Multi-scale Action Learning Transformer for Online Action Detection
    Xie, Liping (lpxie@seu.edu.cn), 1600, Institute of Electrical and Electronics Engineers Inc.
  • [37] DYNAMIC MULTI-SCALE LOSS BALANCE FOR OBJECT DETECTION
    Luo, Yihao
    Cao, Xiang
    Zhang, Juntao
    Cheng, Peng
    Wang, Tianjiang
    Feng, Qi
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4873 - 4877
  • [38] Dynamic multi-scale loss optimization for object detection
    Yihao Luo
    Xiang Cao
    Juntao Zhang
    Peng Cheng
    Tianjiang Wang
    Qi Feng
    Multimedia Tools and Applications, 2023, 82 : 2349 - 2367
  • [39] Dynamic multi-scale loss optimization for object detection
    Luo, Yihao
    Cao, Xiang
    Zhang, Juntao
    Cheng, Peng
    Wang, Tianjiang
    Feng, Qi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (02) : 2349 - 2367
  • [40] Multi-Scale Anomaly Detection in Complex Dynamic Networks
    Mahyari, Arash Golibagh
    Aviyente, Selin
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 603 - 606