Convergence and supercloseness of a finite element method for a two-parameter singularly perturbed problem on Shishkin triangular mesh

被引:2
|
作者
Lv, Yanhui [1 ]
Zhang, Jin [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
关键词
Singular perturbation; Uniform convergence; Finite element method; Shishkin triangular mesh; Supercloseness; Two parameters; CONVECTION-DIFFUSION PROBLEMS; INTERIOR PENALTY METHOD;
D O I
10.1016/j.amc.2021.126753
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a singularly perturbed elliptic problem with two parameters in two dimensions. Using linear finite element method on a Shishkin triangular mesh, we prove the uniform convergence and supercloseness in an energy norm. Some integral inequalities play an important role in our analysis. Numerical tests verify our theoretical results. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Supercloseness of the NIPG method on a Bakhvalov-type mesh for a singularly perturbed problem with two small parameters
    Xu, Lei
    Liu, Li-Bin
    Huang, Zaitang
    Long, Guangqing
    APPLIED NUMERICAL MATHEMATICS, 2025, 207 : 431 - 449
  • [32] The supercloseness of the finite element method for a singularly perturbed convection-diffusion problem on a Bakhvalov-type mesh in 2D
    Zhang, Chunxiao
    Zhang, Jin
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (4) : 1572 - 1593
  • [33] PARAMETER-UNIFORM FINITE ELEMENT METHOD FOR TWO-PARAMETER SINGULARLY PERTURBED PARABOLIC REACTION-DIFFUSION PROBLEMS
    Kadalbajoo, M. K.
    Yadaw, Arjun Singh
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2012, 9 (04)
  • [34] Supercloseness of finite element method for a singularly perturbed convection-diffusion problem on Bakhvalov-type mesh in 2D
    Zhang, Chunxiao
    Zhang, Jin
    arXiv, 2023,
  • [35] Quadratic B-spline collocation method for two-parameter singularly perturbed problem on exponentially graded mesh
    Shivhare, Meenakshi
    Chakravarthy, P. Pramod
    Kumar, Devendra
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (12) : 2461 - 2481
  • [36] A robust numerical method for a two-parameter singularly perturbed time delay parabolic problem
    Sunil Sumit
    Mukesh Kumar
    Computational and Applied Mathematics, 2020, 39
  • [37] A robust numerical method for a two-parameter singularly perturbed time delay parabolic problem
    Sumit
    Kumar, Sunil
    Kuldeep
    Kumar, Mukesh
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [38] A computational method for a two-parameter singularly perturbed elliptic problem with boundary and interior layers
    Shiromani, Ram
    Shanthi, Vembu
    Ramos, Higinio
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 206 : 40 - 64
  • [39] Numerical integration method for two-parameter singularly perturbed time delay parabolic problem
    Cheru, Shegaye Lema
    Duressa, Gemechis File
    Mekonnen, Tariku Birabasa
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2024, 10
  • [40] Error analysis for a spectral element method for solving two-parameter singularly perturbed diffusion equation
    Venkatesh, S. G.
    Balachandar, S. Raja
    Jafari, H.
    Raja, S. P.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2024, 22 (04)