Convergence and supercloseness of a finite element method for a two-parameter singularly perturbed problem on Shishkin triangular mesh

被引:2
|
作者
Lv, Yanhui [1 ]
Zhang, Jin [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
关键词
Singular perturbation; Uniform convergence; Finite element method; Shishkin triangular mesh; Supercloseness; Two parameters; CONVECTION-DIFFUSION PROBLEMS; INTERIOR PENALTY METHOD;
D O I
10.1016/j.amc.2021.126753
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a singularly perturbed elliptic problem with two parameters in two dimensions. Using linear finite element method on a Shishkin triangular mesh, we prove the uniform convergence and supercloseness in an energy norm. Some integral inequalities play an important role in our analysis. Numerical tests verify our theoretical results. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条