Mowing detection using Sentinel-1 and Sentinel-2 time series for large scale grassland monitoring

被引:20
|
作者
De Vroey, Mathilde [1 ]
de Vendictis, Laura [2 ]
Zavagli, Massimo [2 ]
Bontemps, Sophie [1 ]
Heymans, Diane [1 ]
Radoux, Julien [1 ]
Koetz, Benjamin [3 ]
Defourny, Pierre [1 ]
机构
[1] Catholic Univ Louvain, Earth & Life Inst, 2 Croix Sud Bte L7-05-16, B-1348 Louvain La Neuve, Belgium
[2] e Geos, Prod Dev & Innovat Serv, Via Tiburtina 965, I-00156 Rome, Italy
[3] European Space Agcy, ESA ESRIN, Via Galileo Galilei,Casella Postale 64, I-00044 Frascati, Rome, Italy
关键词
Grasslands; Sen4CAP; Sentinel-1; Sentinel-2; Mowingdetection; ECOSYSTEM SERVICES; SOIL-MOISTURE; USE INTENSITY; BIODIVERSITY; MANAGEMENT; IMPACT;
D O I
10.1016/j.rse.2022.113145
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Managed grasslands cover about one third of the European utilized agricultural area. Appropriate grassland management is key for balancing trade-offs between provisioning and regulating ecosystem services. The timing and frequency of mowing events are major factors of grassland management. Recent studies have shown the feasibility of detecting mowing events using remote sensing time series from optical and radar satellites. In this study, we present a new method combining the regular observations of Sentinel-1 (S1) and the better accuracy of Sentinel-2 (S2) grassland mowing detection algorithms. This multi-source approach for grassland monitoring was assessed over large areas and in various contexts. The method was first validated in six European countries, based on Planet image interpretation. Its performances and sensitivity were then thoroughly assessed in an independent study area using a more precise and complete reference dataset based on an intensive field campaign. Results showed the robustness of the method across all study areas and different types of grasslands. The method reached a F1-score of 79% for detecting mowing events on hay meadows. Furthermore, the detection of mowing events along the growing season allows to classify mowing practices with an overall accuracy of 69%. This is promising for differentiating grasslands in terms of management intensity. The method could therefore be used for largescale grassland monitoring to support agri-environmental schemes in Europe.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Use of time series Sentinel-1 and Sentinel-2 image for rice crop inventory in parts of Bangladesh
    Md. Abdullah Aziz
    Dipanwita Haldar
    Abhishek Danodia
    Prakash Chauhan
    Applied Geomatics, 2023, 15 : 407 - 420
  • [42] Exploiting Time Series of Sentinel-1 and Sentinel-2 Imagery to Detect Meadow Phenology in Mountain Regions
    Stendardi, Laura
    Karlsen, Stein Rune
    Niedrist, Georg
    Gerdol, Renato
    Zebisch, Marc
    Rossi, Mattia
    Notarnicola, Claudia
    REMOTE SENSING, 2019, 11 (05)
  • [43] Fusion of Sentinel-1 and Sentinel-2 image time series for permanent and temporary surface water mapping
    Bioresita, Filsa
    Puissant, Anne
    Stumpf, Andre
    Malet, Jean-Philippe
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (23) : 9026 - 9049
  • [44] Mediterranean Shrublands Biomass Estimation Using Sentinel-1 and Sentinel-2
    Chang, Jisung
    Shoshany, Maxim
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5300 - 5303
  • [45] ESTIMATION OF SOIL MOISTURE USING SENTINEL-1 AND SENTINEL-2 IMAGES
    Sarteshnizi, R. Esmaeili
    Vayghan, S. Sahebi
    Jazirian, I.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 137 - 142
  • [46] Vision Transformer for Flood Detection Using Satellite Images from Sentinel-1 and Sentinel-2
    Chamatidis, Ilias
    Istrati, Denis
    Lagaros, Nikos D.
    WATER, 2024, 16 (12)
  • [47] Automated Processing of Sentinel-2 Products for Time-Series Analysis in Grassland Monitoring
    Hardy, Tom
    Franceschini, Marston Domingues
    Kooistra, Lammert
    Novani, Marcello
    Richter, Sebastiaan
    ENVIRONMENTAL SOFTWARE SYSTEMS: DATA SCIENCE IN ACTION, ISESS 2020, 2020, 554 : 48 - 56
  • [48] Nationwide operational mapping of grassland first mowing dates combining machine learning and Sentinel-2 time series
    Rivas, Henry
    Touchais, Helene
    Thierion, Vincent
    Millet, Jerome
    Curtet, Laurence
    Fauvel, Mathieu
    REMOTE SENSING OF ENVIRONMENT, 2024, 315
  • [49] Irrigation Mapping Using Sentinel-1 Time Series at Field Scale
    Gao, Qi
    Zribi, Mehrez
    Jose Escorihuela, Maria
    Baghdadi, Nicolas
    Segui, Pere Quintana
    REMOTE SENSING, 2018, 10 (09)
  • [50] Mapping grassland mowing events across Germany based on combined Sentinel-2 and Landsat 8 time series
    Schwieder, Marcel
    Wesemeyer, Maximilian
    Frantz, David
    Pfoch, Kira
    Erasmi, Stefan
    Pickert, Jürgen
    Nendel, Claas
    Hostert, Patrick
    Remote Sensing of Environment, 2022, 269