ON FOKKER-PLANCK EQUATIONS WITH IN- AND OUTFLOW OF MASS

被引:5
|
作者
Burger, Martin [1 ]
Humpert, Ina [2 ]
Pietschmann, Jan-Frederik [3 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[2] Westfalische Wilhelms Univ Munster, Inst Angew Math Anal & Numer, Orleans Ring 10, D-48149 Munster, Germany
[3] Tech Univ Chemnitz, Fak Math, Reichenhainer Str 41, D-09126 Chemnitz, Germany
关键词
Fokker-Planck equations; Entropy methods; Exponential decay; Mass evolution; Logarithmic-Sobolev inequality; GLOBAL EQUILIBRIUM; SYSTEMS; MODELS; TREND; DECAY;
D O I
10.3934/krm.2020009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by modeling transport processes in the growth of neurons, we present results on (nonlinear) Fokker-Planck equations where the total mass is not conserved. This is either due to in- and outflow boundary conditions or to spatially distributed reaction terms. We are able to prove exponential decay towards equilibrium using entropy methods in several situations. As there is no conservation of mass it is difficult to exploit the gradient flow structure of the differential operator which renders the analysis more challenging. In particular, classical logarithmic Sobolev inequalities are not applicable any more. Our analytic results are illustrated by extensive numerical studies.
引用
收藏
页码:249 / 277
页数:29
相关论文
共 50 条
  • [21] DIFFERENTIAL EQUATIONS OF FOKKER-PLANCK TYPE
    KRATZEL, E
    MATHEMATISCHE NACHRICHTEN, 1967, 35 (3-4) : 137 - &
  • [22] Numerical solution for Fokker-Planck equations in accelerators
    Zorzano, MP
    Mais, H
    Vazquez, L
    PROCEEDINGS OF THE 1997 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-3: PLENARY AND SPECIAL SESSIONS ACCELERATORS AND STORAGE RINGS - BEAM DYNAMICS, INSTRUMENTATION, AND CONTROLS, 1998, : 1825 - 1827
  • [23] A numerical method for generalized Fokker-Planck equations
    Han, Weimin
    Li, Yi
    Sheng, Qiwei
    Tang, Jinping
    RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2013, 586 : 171 - +
  • [24] Linearization of nonlinear Fokker-Planck equations and applications
    Ren, Panpan
    Roeckner, Michael
    Wang, Feng-Yu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 322 : 1 - 37
  • [25] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S.
    Plastino, A.R.
    Plastino, A.
    Physica A: Statistical Mechanics and its Applications, 1998, 259 (1-2): : 183 - 192
  • [26] Generalized entropies and the Langevin and Fokker-Planck equations
    Akimoto, M
    Suzuki, A
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2002, 40 (06) : 974 - 978
  • [27] Hypergeometric foundations of Fokker-Planck like equations
    Plastino, A.
    Rocca, M. C.
    PHYSICS LETTERS A, 2016, 380 (22-23) : 1900 - 1903
  • [28] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S
    Plastino, AR
    Plastino, A
    PHYSICA A, 1998, 259 (1-2): : 183 - 192
  • [29] TIME AVERAGES FOR KINETIC FOKKER-PLANCK EQUATIONS
    Brigati, Giovanni
    KINETIC AND RELATED MODELS, 2022, : 524 - 539
  • [30] Lp-solutions of Fokker-Planck equations
    Wei, Jinlong
    Liu, Bin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 85 : 110 - 124