Study of Human Motion Recognition Algorithm Based on Multichannel 3D Convolutional Neural Network

被引:5
|
作者
Ju, Yang [1 ]
机构
[1] Tianjin Univ Commerce, Dept Phys Educ, Tianjin 300134, Peoples R China
关键词
SPARSE REPRESENTATION; VIDEOS;
D O I
10.1155/2021/7646813
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Aiming at the problem that it is difficult to balance the speed and accuracy of human behaviour recognition, this paper proposes a method of motion recognition based on random projection. Firstly, the optical flow picture and Red, Green, Blue (RGB) picture obtained by the Lucas-Kanade algorithm are used. Secondly, the data of optical flow pictures and RGB pictures are compressed based on a random projection matrix of compressed sensing, which effectively reduces power consumption. At the same time, based on random projection compression data, it can effectively find the optimal linear representation to reconstruct training samples and test samples. Thirdly, a multichannel 3D convolutional neural network is proposed, and the multiple information extracted by the network is fused to form an output recognizer. Experimental results show that the algorithm in this paper significantly improves the recognition rate of multicategory actions and effectively reduces the computational complexity and running time of the recognition algorithm.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Smoke Video Detection Algorithm Based on 3D Convolutional Neural Network
    Shi, Zhen
    Sun, Rui
    Huo, Mingge
    Proceedings of the 34th Chinese Control and Decision Conference, CCDC 2022, 2022, : 692 - 697
  • [22] Study on Vehicle Recognition Algorithm Based on Convolutional Neural Network
    Wenkai, Bi
    2023 3RD ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE, ACCTCS, 2023, : 212 - 216
  • [23] Human Action Recognition using 3D Convolutional Neural Networks with 3D Motion Cuboids in Surveillance Videos
    Arunnehru, J.
    Chamundeeswari, G.
    Bharathi, S. Prasanna
    INTERNATIONAL CONFERENCE ON ROBOTICS AND SMART MANUFACTURING (ROSMA2018), 2018, 133 : 471 - 477
  • [24] 3D Convolutional Neural Networks for Soccer Object Motion Recognition
    Lee, Jiwon
    Kim, Yoonhyung
    Jeong, Minki
    Kim, Changick
    Nam, Do-Won
    Lee, JungSoo
    Moon, Sungwon
    Yoo, WonYoung
    2018 20TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 2018, : 354 - 358
  • [25] Classification of 3D CAD Models considering the Knowledge Recognition Algorithm of Convolutional Neural Network
    Wang, Weiwei
    Sun, Dandan
    ADVANCES IN MULTIMEDIA, 2022, 2022
  • [26] Convolutional Neural Network for 3D Object Recognition Based on RGB-D Dataset
    Wang, Jianhua
    Lu, Jinjin
    Chen, Weihai
    Wu, Xingming
    PROCEEDINGS OF THE 2015 10TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, 2015, : 34 - 39
  • [27] 3D Convolutional Neural Networks for Human Action Recognition
    Ji, Shuiwang
    Xu, Wei
    Yang, Ming
    Yu, Kai
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) : 221 - 231
  • [28] Respiratory Motion Correction on PET Images Based on 3D Convolutional Neural Network
    Hou, Yibo
    He, Jianfeng
    She, Bo
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2022, 16 (07) : 2191 - 2208
  • [29] Working activity recognition approach based on 3D deep convolutional neural network
    Liu T.
    Lu Z.
    Sun Y.
    Liu F.
    He B.
    Zhong J.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2020, 26 (08): : 2143 - 2156
  • [30] Micro-expression recognition based on 3D flow convolutional neural network
    Li, Jing
    Wang, Yandan
    See, John
    Liu, Wenbin
    PATTERN ANALYSIS AND APPLICATIONS, 2019, 22 (04) : 1331 - 1339