Thermal Performance of a Dimpled Tube Parabolic Trough Solar Collector (PTSC) with SiO2 Nanofluid

被引:6
|
作者
Arun, M. [1 ]
Barik, Debabrata [1 ]
Sridhar, K. P. [2 ]
Dennison, Milon Selvam [3 ]
机构
[1] Karpagam Acad Higher Educ, Dept Mech Engn, Coimbatore 641021, India
[2] Karpagam Acad Higher Educ, Dept Elect & Commun Engn, Coimbatore 641021, India
[3] Kampala Int Univ, Dept Mech Engn, Western Campus, Kampala, Uganda
关键词
HEAT-TRANSFER; EFFICIENCY; FLOW;
D O I
10.1155/2022/8595591
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this research work, dimple texture tubes and silicon dioxide (SiO2) nanofluid were used to analyze the performance parameters of a solar water heater. For this purpose, SiO2 was mixed with deionized (DI) water using an ultrasonic dispersion device to prepare the nanofluids (SiO2/DI-H2O). The size of the nanoparticle was in the range of 10-15 nm. Different volume concentrations of the nanoparticles in the range of 0.1% to 0.5%, in steps of 0.1%, were chosen to prepare the nanofluids to carry out the experiments. Apart from this, computational fluid dynamics (CFD) tool was used to numerically analyze the parameters affecting the performance of the solar water heater, as well as the fluid flow pattern in the dimple texture tube. During the experiment, the mass flow rate of the base fluid (water) varied in the range of 0.5 kg/min to 3.0 kg/min in steps of 0.5 kg/min. The added advantage of the dimple texture tube design led to an increase in turbulence in the flow pattern, resulting 34.2% increase in the convective heat transfer efficiency compared with the plain tube. Among all experimental modules, SiO2/DI-H2O with a mass flow rate of 2.5 kg/min and 0.3% volume concentration gives overall optimized results in absolute energy absorption, gradient temperature, and efficiency of the solar water heater. The efficiency metrics of the experimental results were compared with the simulation results, and it was in the acceptable range with an overall deviation of +/- 7.42%.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Application of nanofluid flow in entropy generation and thermal performance analysis of parabolic trough solar collector: experimental and numerical study
    Ekiciler, Recep
    Arslan, Kamil
    Turgut, Oguz
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (14) : 7299 - 7318
  • [42] Design and Implementation of Parabolic Trough Solar Thermal Collector
    Tahjib, Alam
    Tanzin, Humaiya
    Azim, Hasan
    Rahman, S. M. Imrat
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 670 - 673
  • [43] Thermal performance enhancement in a solar parabolic trough collector with optimized secondary optics
    Shyam, Ashokkumar
    Ahmed, Kalilur Rahiman Arshad
    Christopher, Sathiya Satchi
    Iniyan, Selvarasan
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2024, 26 (03) : 771 - 784
  • [44] Thermal performance enhancement in a solar parabolic trough collector with optimized secondary optics
    Ashokkumar Shyam
    Kalilur Rahiman Arshad Ahmed
    Sathiya Satchi Christopher
    Selvarasan Iniyan
    Clean Technologies and Environmental Policy, 2024, 26 : 771 - 784
  • [45] Optical, thermal, and structural performance analyses of a parabolic-trough solar collector
    Wang, Chunwei
    Hu, Yanwei
    He, Yurong
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2020, 12 (05)
  • [46] RECENT IMPROVEMENTS OF THE OPTICAL AND THERMAL PERFORMANCE OF THE PARABOLIC TROUGH SOLAR COLLECTOR SYSTEMS
    Al-Rabeeah, Asaad Yasseen
    Seres, Istvan
    Farkas, Istvan
    FACTA UNIVERSITATIS-SERIES MECHANICAL ENGINEERING, 2022, 20 (01) : 73 - 94
  • [47] Performance studies of a solar parabolic trough collector with a thermal energy storage system
    Kumaresan, Govindaraj
    Sridhar, Rahulram
    Velraj, Ramalingom
    ENERGY, 2012, 47 (01) : 395 - 402
  • [48] Performance analysis of a solar parabolic trough collector fitted with a helical coiled tube absorber
    Syed Jafar K.
    Venkatesaperumal R.
    Beemkumar N.
    Santhoshkumar M.
    Rajamurugan T.V.
    International Journal of Ambient Energy, 2023, 44 (01) : 442 - 449
  • [49] Effects of flow regime and geometric parameters on the performance of a parabolic trough solar collector using nanofluid
    Ouabouch, Omar
    Laasri, Imad Ait
    Kriraa, Mounir
    Lamsaadi, Mohamed
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2022, 82 (07) : 376 - 388
  • [50] Study of the effect of the position and metal of the receiver tube on the performance of a parabolic trough solar collector
    Ghodbane, Mokhtar
    Boumeddane, Boussad
    Khechekhouche, Abderrahmane
    Largot, Soulef
    MATERIALS TODAY-PROCEEDINGS, 2022, 51 : 2144 - 2151