Function spaces not containing l1

被引:4
|
作者
Argyros, SA
Manoussakis, A
Petrakis, M
机构
[1] Natl Tech Univ Athens, Dept Math, GR-15780 Athens, Greece
[2] Tech Univ Crete, Dept Sci, GR-73100 Hania, Crete, Greece
关键词
D O I
10.1007/BF02776049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For Omega bounded and open subset of R(d)0 and X a reflexive Banach space with 1-symmetric basis, the function space JF(X) (Omega) is defined. This class of spaces includes the classical James function space. Every member of this class is separable and has non-separable dual. We provide a proof of topological nature that JF(X)(Omega) does not contain an isomorphic copy of l(1). We also investigate the structure of these spaces and their duals.
引用
收藏
页码:29 / 81
页数:53
相关论文
共 50 条
  • [41] Spaces between H1 and L1
    Abu-Shammala, Wael
    Torchinsky, Alberto
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (05) : 1743 - 1748
  • [42] Function spaces not containing ℓ1
    S. A. Argyros
    A. Manoussakis
    M. Petrakis
    Israel Journal of Mathematics, 2003, 135 : 29 - 81
  • [43] UNIT BALL IN CONJUGATE L1 SPACES
    LAZAR, AJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (03): : 572 - &
  • [44] On approximate l1 systems in Banach spaces
    Dilworth, SJ
    Kutzarova, D
    Wojtaszczyk, P
    JOURNAL OF APPROXIMATION THEORY, 2002, 114 (02) : 214 - 241
  • [45] PROJECTIONS IN L1 AND LINFINITY-SPACES
    MCCARTHY, CA
    TZAFRIRI, L
    PACIFIC JOURNAL OF MATHEMATICS, 1968, 26 (03) : 529 - &
  • [46] A fixed point theorem for L1 spaces
    U. Bader
    T. Gelander
    N. Monod
    Inventiones mathematicae, 2012, 189 : 143 - 148
  • [47] OPERATOR CHARACTERIZATIONS OF L1 AND LINFINITY SPACES
    STEGALL, CP
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1971, 19 (01): : 73 - &
  • [49] The Cesaro operator in weighted l1 spaces
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (07) : 1015 - 1048
  • [50] Extended Lagrange Interpolation in L1 Spaces
    Occorsio, Donatella
    Russo, Maria Grazia
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA-2016), 2016, 1776