High-order kinetic relaxation schemes as high-accuracy Poisson solvers

被引:1
|
作者
Mendoza, M. [1 ]
Succi, S. [2 ]
Herrmann, H. J. [1 ]
机构
[1] Swiss Fed Inst Technol, Computat Phys Engn Mat, Inst Bldg Mat, CH-8093 Zurich, Switzerland
[2] CNR, Ist Applicazioni Calcolo, I-00185 Rome, Italy
来源
基金
欧洲研究理事会;
关键词
High Knudsen number; higher-order moments; diffusion equation; Poisson equation; lattice Boltzmann; LATTICE BOLTZMANN-EQUATION; MODEL; ELECTROSTATICS; SIMULATIONS;
D O I
10.1142/S0129183115500552
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new approach to find accurate solutions to the Poisson equation, as obtained from the steady-state limit of a diffusion equation with strong source terms. For this purpose, we start from Boltzmann's kinetic theory and investigate the influence of higher-order terms on the resulting macroscopic equations. By performing an appropriate expansion of the equilibrium distribution, we provide a method to remove the unnecessary terms up to a desired order and show that it is possible to find, with high level of accuracy, the steady-state solution of the diffusion equation for sizeable Knudsen numbers. In order to test our kinetic approach, we discretize the Boltzmann equation and solve the Poisson equation, spending up to six order of magnitude less computational time for a given precision than standard lattice Boltzmann methods (LBMs).
引用
收藏
页数:16
相关论文
共 50 条
  • [31] High-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects
    Zeng, Zhaoli
    Qu, Xueming
    Tan, Yidong
    Tan, Runtao
    Zhang, Shulian
    OPTICS EXPRESS, 2015, 23 (13): : 16977 - 16983
  • [32] High Order of Accuracy for Poisson Equation Obtained by Grouping of Repeated Richardson Extrapolation with Fourth Order Schemes
    da Silva, Luciano Pereira
    Rutyna, Bruno Benato
    Santos Righi, Aline Roberta
    Villela Pinto, Marcio Augusto
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 128 (02): : 699 - 715
  • [33] High-order accurate ADI-FDTD method with high-order spatial accuracy
    Xiao, Fei
    Tang, Xiaohong
    Guo, Lei
    IEEE 2007 INTERNATIONAL SYMPOSIUM ON MICROWAVE, ANTENNA, PROPAGATION AND EMC TECHNOLOGIES FOR WIRELESS COMMUNICATIONS, VOLS I AND II, 2007, : 938 - 941
  • [34] Real gas computation using an energy relaxation method and high-order WENO schemes
    Montarnal, P
    Shu, CW
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 148 (01) : 59 - 80
  • [35] Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system
    Besse, Nicolas
    Mehrenberger, Michel
    MATHEMATICS OF COMPUTATION, 2008, 77 (261) : 93 - 123
  • [36] TVD fluxes for the high-order ADER schemes
    Toro, EF
    Titarev, VA
    JOURNAL OF SCIENTIFIC COMPUTING, 2005, 24 (03) : 285 - 309
  • [37] High-order schemes for multidimensional hyperbolic problems
    Dumbser, M.
    LECTURE NOTES ON NUMERICAL METHODS FOR HYPERBOLIC EQUATIONS: SHORT COURSE BOOK, 2011, : 85 - 103
  • [38] Compact high-order accurate nonlinear schemes
    Deng, XG
    Maekawa, H
    JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 130 (01) : 77 - 91
  • [39] High-order upwind schemes for multidimensional magnetohydrodynamics
    Londrillo, P
    Del Zanna, L
    ASTROPHYSICAL JOURNAL, 2000, 530 (01): : 508 - 524
  • [40] VARIATIONAL-DIFFERENCE OF HIGH-ORDER ACCURACY SCHEMES FOR THE STURM-LIEUVILLE PROBLEM
    MAKAROV, IL
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1987, (02): : 29 - 32