Perturbations of quadratic Hamiltonian two-saddle cycles

被引:11
|
作者
Gavrilov, Lubomir [1 ]
They, Iliya D. [2 ]
机构
[1] Univ Toulouse, CNRS, UPS IMT, UMR 5219, F-31062 Toulouse 9, France
[2] Bulgarian Acad Sci, Inst Math, BU-1113 Sofia, Bulgaria
关键词
ALIEN LIMIT-CYCLES; HILBERTS 16TH PROBLEM; ELLIPTIC SEGMENT LOOPS; PLANAR VECTOR-FIELDS; PERIOD ANNULI; SYSTEMS; CYCLICITY; NUMBER; UNFOLDINGS; APPEAR;
D O I
10.1016/j.anihpc.2013.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the number of limit cycles which bifurcate from a two-saddle loop of a planar quadratic Hamiltonian system, under an arbitrary quadratic deformation, is less than or equal to three. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:307 / 324
页数:18
相关论文
共 50 条
  • [21] Bifurcation of Limit Cycles in a Near-Hamiltonian System with a Cusp of Order Two and a Saddle
    Bakhshalizadeh, Ali
    Zangeneh, Hamid R. Z.
    Kazemi, Rasool
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (11):
  • [22] FINITE CYCLICITY OF SLOW-FAST DARBOUX SYSTEMS WITH A TWO-SADDLE LOOP
    Bobienski, Marcin
    Gavrilov, Lubomir
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (10) : 4205 - 4219
  • [23] Limit cycles generated by perturbations of Hamiltonian systems
    Pushkar, IA
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (05) : 1002 - 1004
  • [24] Bifurcations of a class of nongeneric quadratic Hamiltonian systems under quadratic perturbations
    Li, BY
    Xiao, DM
    Zhang, ZF
    DIFFERENTIAL EQUATIONS AND CONTROL THEORY, 1996, 176 : 149 - 156
  • [25] Two Hamiltonian cycles
    Sivaraman, Vaidy
    Zaslavsky, Thomas
    DISCRETE MATHEMATICS, 2022, 345 (05)
  • [26] The Maximal Number of Limit Cycles in Perturbations of Piecewise Linear Hamiltonian Systems with Two Saddles
    Xiong, Yanqin
    Han, Maoan
    Romanovski, Valery G.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (08):
  • [27] Limit Cycles in Two Kinds of Quadratic Reversible Systems with Non-smooth Perturbations
    Yang J.
    Qualitative Theory of Dynamical Systems, 2021, 20 (2)
  • [28] Integrable perturbations of saddle singularities of rank 0 of integrable Hamiltonian systems
    Oshemkov, A. A.
    Tuzhilin, M. A.
    SBORNIK MATHEMATICS, 2018, 209 (09) : 1351 - 1375
  • [29] Limit cycles for a cubic Hamiltonian system with lower perturbations
    Liu, Zheng-Rong
    Li, Shao-Yong
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2007, : 1526 - 1529
  • [30] ON THE NUMBER OF LIMIT CYCLES IN PERTURBATIONS OF A QUADRATIC REVERSIBLE CENTER
    Wu, Juanjuan
    Peng, Linping
    Li, Cuiping
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 92 (03) : 409 - 423