Online Maximum Directed Cut

被引:0
|
作者
Bar-Noy, Amotz [1 ]
Lampis, Michael [1 ]
机构
[1] CUNY, Doctoral Program Comp Sci, Grad Ctr, New York, NY 10021 USA
来源
关键词
APPROXIMATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate a natural online version of the well-known MAXIMUM DIRECTED CUT problem on DAGs. We propose a deterministic algorithm and show that it achieves a competitive ratio of 3 root 3/2 approximate to 2.5981. We then give a lower bound argument to show that no deterministic algorithm can achieve a ratio of 3 root 3/2 - epsilon for any epsilon > 0 thus showing that our algorithm is essentially optimal. Then, we extend our technique to improve upon the analysis of an old result: we show that greedily derandomizing the trivial randomized algorithm for MAXDICUT in general graphs improves the competitive ratio from 4 to 3, and also provide a tight example.
引用
收藏
页码:1124 / 1133
页数:10
相关论文
共 50 条
  • [31] Spectral bounds for the maximum cut problem
    GET/INT, CNRS/SAMOVAR, Institut National des Télécommunications, 9 rue Charles Fourier, 91011 Evry, France
    不详
    Networks, 1 (8-13):
  • [32] Maximum reachability preserved graph cut
    Miao, Dongjing
    Li, Jianzhong
    Cai, Zhipeng
    THEORETICAL COMPUTER SCIENCE, 2020, 840 (840) : 187 - 198
  • [33] Maximum cut on line and total graphs
    Guruswami, V
    DISCRETE APPLIED MATHEMATICS, 1999, 92 (2-3) : 217 - 221
  • [34] Maximum cut problem: new models
    Kutucu, Hakan
    Sharifov, Firdovsi
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2020, 10 (01): : 104 - 112
  • [35] LAPLACIAN EIGENVALUES AND THE MAXIMUM CUT PROBLEM
    DELORME, C
    POLJAK, S
    MATHEMATICAL PROGRAMMING, 1993, 62 (03) : 557 - 574
  • [36] FINDING THE MAXIMUM CUT BY THE GREEDY ALGORITHM
    Sharifov, F. A.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2018, 54 (05) : 737 - 743
  • [37] Maximum cut parameterized by crossing number
    Chimani M.
    Dahn C.
    Juhnke-Kubitzke M.
    Kriege N.M.
    Mutzel P.
    Nover A.
    1600, Brown University (24): : 155 - 170
  • [38] Complexity of Maximum Cut on Interval Graphs
    Ranendu Adhikary
    Kaustav Bose
    Satwik Mukherjee
    Bodhayan Roy
    Discrete & Computational Geometry, 2023, 70 : 307 - 322
  • [39] Spectral bounds for the maximum cut problem
    Ben-Ameur, Walid
    Neto, Jose
    NETWORKS, 2008, 52 (01) : 8 - 13
  • [40] Polynomial Flow-Cut Gaps and Hardness of Directed Cut Problems
    Chuzhoy, Julia
    Khanna, Sanjeev
    STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, : 179 - 188