POSITIVE RADIAL SOLUTIONS FOR THE MINKOWSKI-CURVATURE EQUATION WITH NEUMANN BOUNDARY CONDITIONS
被引:10
|
作者:
Boscaggin, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Boscaggin, Alberto
[1
]
Colasuonno, Francesca
论文数: 0引用数: 0
h-index: 0
机构:
Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Colasuonno, Francesca
[1
]
Noris, Benedetta
论文数: 0引用数: 0
h-index: 0
机构:
Univ Picardie Jules Verne, Lab Amienois Math Fondamentale & Appl, 33 Rue St Leu, F-80039 Amiens, FranceUniv Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Noris, Benedetta
[2
]
机构:
[1] Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Picardie Jules Verne, Lab Amienois Math Fondamentale & Appl, 33 Rue St Leu, F-80039 Amiens, France
Lorentz-Minkowski mean curvature operator;
shooting method;
existence and multiplicity;
oscillating solutions;
Neumann boundary conditions;
BORN-INFELD EQUATION;
DIRICHLET PROBLEM;
P-LAPLACIAN;
NONLINEAR PROBLEMS;
GROUND-STATES;
OPERATOR;
HYPERSURFACES;
UNIQUENESS;
D O I:
10.3934/dcdss.2020150
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We analyze existence, multiplicity and oscillatory behavior of positive radial solutions to a class of quasilinear equations governed by the Lorentz-Minkowski mean curvature operator. The equation is set in a ball or an annulus of RN, is subject to homogeneous Neumann boundary conditions, and involves a nonlinear term on which we do not impose any growth condition at infinity. The main tool that we use is the shooting method for ODEs.
机构:
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
Yu, Xingchen
Lu, Shiping
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
Lu, Shiping
Kong, Fanchao
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Normal Univ, Sch Math & Stat, Wuhu 241000, Anhui, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China