POSITIVE RADIAL SOLUTIONS FOR THE MINKOWSKI-CURVATURE EQUATION WITH NEUMANN BOUNDARY CONDITIONS

被引:10
|
作者
Boscaggin, Alberto [1 ]
Colasuonno, Francesca [1 ]
Noris, Benedetta [2 ]
机构
[1] Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Picardie Jules Verne, Lab Amienois Math Fondamentale & Appl, 33 Rue St Leu, F-80039 Amiens, France
来源
关键词
Lorentz-Minkowski mean curvature operator; shooting method; existence and multiplicity; oscillating solutions; Neumann boundary conditions; BORN-INFELD EQUATION; DIRICHLET PROBLEM; P-LAPLACIAN; NONLINEAR PROBLEMS; GROUND-STATES; OPERATOR; HYPERSURFACES; UNIQUENESS;
D O I
10.3934/dcdss.2020150
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze existence, multiplicity and oscillatory behavior of positive radial solutions to a class of quasilinear equations governed by the Lorentz-Minkowski mean curvature operator. The equation is set in a ball or an annulus of RN, is subject to homogeneous Neumann boundary conditions, and involves a nonlinear term on which we do not impose any growth condition at infinity. The main tool that we use is the shooting method for ODEs.
引用
收藏
页码:1921 / 1933
页数:13
相关论文
共 50 条