Fractional hydrodynamic equations for fractal media

被引:174
|
作者
Tarasov, VE [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119992, Russia
关键词
hydrodynamic equations; fractal media; fractional integral;
D O I
10.1016/j.aop.2005.01.004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the fractional integrals in order to describe dynamical processes in the fractal medium. We consider the "fractional" continuous medium model for the fractal media and derive the fractional generalization of the equations of balance of mass density, momentum density, and internal energy. The fractional generalization of Navier-Stokes and Euler equations are considered. We derive the equilibrium equation for fractal media. The sound waves in the continuous medium model for fractional media are considered. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:286 / 307
页数:22
相关论文
共 50 条
  • [21] ON LOCAL FRACTIONAL VOLTERRA INTEGRAL EQUATIONS IN FRACTAL HEAT TRANSFER
    Wu, Zhong-Hua
    Debbouche, Amar
    Guirao, Juan L. G.
    Yang, Xiao-Jun
    THERMAL SCIENCE, 2016, 20 : S795 - S800
  • [22] FRACTAL GROWTH IN HYDRODYNAMIC DISPERSION THROUGH RANDOM POROUS-MEDIA
    MARTYS, NS
    PHYSICAL REVIEW E, 1994, 50 (01): : 335 - 342
  • [23] FRACTAL AND SUPERDIFFUSIVE TRANSPORT AND HYDRODYNAMIC DISPERSION IN HETEROGENEOUS POROUS-MEDIA
    SAHIMI, M
    TRANSPORT IN POROUS MEDIA, 1993, 13 (01) : 3 - 40
  • [24] Numerical methods for solving transport equations in fractal media
    Kol'tsova, EM
    Vasilenko, VA
    Tarasov, VV
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY, 2000, 74 (05): : 848 - 850
  • [25] THE LOCAL FRACTIONAL ITERATION SOLUTION FOR THE DIFFUSION PROBLEM IN FRACTAL MEDIA
    Hao, Ya-Juan
    Yang, Ai-Min
    THERMAL SCIENCE, 2016, 20 : S743 - S746
  • [26] LOCAL FRACTIONAL HELMHOLTZ SIMULATION FOR HEAT CONDUCTION IN FRACTAL MEDIA
    Deng, Shu-Xian
    Ge, Xin-Xin
    THERMAL SCIENCE, 2019, 23 (03): : 1671 - 1675
  • [27] Existence and uniqueness of fractal-fractional equations generated by a new fractal-fractional operator utilizing the advanced gamma function
    Alazman, Ibtehal
    Ibrahim, Rabha W.
    METHODSX, 2024, 12
  • [28] Fractional viscoelasticity in fractal and non-fractal media: Theory, experimental validation, and uncertainty analysis
    Mashayekhi, Somayeh
    Miles, Paul
    Hussaini, M. Yousuff
    Oates, William S.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2018, 111 : 134 - 156
  • [29] Local Fuzzy Fractional Partial Differential Equations in the Realm of Fractal Calculus with Local Fractional Derivatives
    Osman, Mawia
    Marwan, Muhammad
    Shah, Syed Omar
    Loudahi, Lamia
    Samar, Mahvish
    Bittaye, Ebrima
    Mohammed Mustafa, Altyeb
    FRACTAL AND FRACTIONAL, 2023, 7 (12)
  • [30] Solving fractal-fractional differential equations using operational matrix of derivatives via Hilfer fractal-fractional derivative sense
    Shloof, A. M.
    Senu, N.
    Ahmadian, A.
    Long, N. M. A. Nik
    Salahshour, S.
    APPLIED NUMERICAL MATHEMATICS, 2022, 178 : 386 - 403