Fractional hydrodynamic equations for fractal media

被引:174
|
作者
Tarasov, VE [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119992, Russia
关键词
hydrodynamic equations; fractal media; fractional integral;
D O I
10.1016/j.aop.2005.01.004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the fractional integrals in order to describe dynamical processes in the fractal medium. We consider the "fractional" continuous medium model for the fractal media and derive the fractional generalization of the equations of balance of mass density, momentum density, and internal energy. The fractional generalization of Navier-Stokes and Euler equations are considered. We derive the equilibrium equation for fractal media. The sound waves in the continuous medium model for fractional media are considered. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:286 / 307
页数:22
相关论文
共 50 条
  • [1] DERIVATION OF FRACTIONAL DIFFERENTIAL EQUATIONS FOR MODELING DIFFUSION IN POROUS MEDIA OF FRACTAL GEOMETRY
    Fomin, Sergei
    Chugunov, Vladimir
    Hashida, Toshiyuki
    IMECE 2008: HEAT TRANSFER, FLUID FLOWS, AND THERMAL SYSTEMS, VOL 10, PTS A-C, 2009, : 1041 - 1046
  • [2] TRANSPORT EQUATIONS IN FRACTAL POROUS MEDIA WITHIN FRACTIONAL COMPLEX TRANSFORM METHOD
    Yang, Xiao-Jun
    Baleanu, Dumitru
    He, Ji-Huan
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2013, 14 (04): : 287 - 292
  • [3] An efficient computational technique for local fractional heat conduction equations in fractal media
    Zhao, Duan
    Singh, Jagdev
    Kumar, Devendra
    Rathore, Sushila
    Yang, Xiao-Jun
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 1478 - 1486
  • [4] Analysis of local fractional coupled Helmholtz and coupled Burgers' equations in fractal media
    Dubey, Ved Prakash
    Singh, Jagdev
    Alshehri, Ahmed M.
    Dubey, Sarvesh
    Kumar, Devendra
    AIMS MATHEMATICS, 2022, 7 (05): : 8080 - 8111
  • [5] ON SOLUTIONS OF FRACTAL FRACTIONAL DIFFERENTIAL EQUATIONS
    Atangana, Abdon
    Akgul, Ali
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (10): : 3441 - 3457
  • [6] Analysis of fractal fractional differential equations
    Atangana, Abdon
    Akgul, Ali
    Owolabi, Kolade M.
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (03) : 1117 - 1134
  • [7] Modeling Riemann–Liouville fractional differential equations for diffusion and reaction in fractal porous media
    Peng Zhang
    Ping Li
    Guohua Xiu
    Alirio E. Rodrigues
    Journal of Mathematical Chemistry, 2021, 59 : 459 - 475
  • [8] Approximate Solutions for Local Fractional Linear Transport Equations Arising in Fractal Porous Media
    Li, Meng
    Hui, Xiao-Feng
    Cattani, Carlo
    Yang, Xiao-Jun
    Zhao, Yang
    ADVANCES IN MATHEMATICAL PHYSICS, 2014, 2014
  • [9] A hybrid computational method for local fractional dissipative and damped wave equations in fractal media
    Dubey, Ved Prakash
    Singh, Jagdev
    Alshehri, Ahmed M.
    Dubey, Sarvesh
    Kumar, Devendra
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,
  • [10] Modeling Riemann-Liouville fractional differential equations for diffusion and reaction in fractal porous media
    Zhang, Peng
    Li, Ping
    Xiu, Guohua
    Rodrigues, Alirio E.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2021, 59 (02) : 459 - 475