Effects of rhamnolipid bio-surfactant and sodium dodecylbenzene sulfonate (SDBS) surfactant on enhanced oil recovery from carbonate reservoirs

被引:4
|
作者
Imanivarnosfaderani, M. R. [1 ]
Gomari, S. Rezaei [1 ]
dos Santos, Ronaldo Goncalves [2 ]
机构
[1] Teesside Univ, Sch Comp Engn & Digital Technol, Middlesbrough, Cleveland, England
[2] Ctr Univ FEI, Dept Chem Engn, Sao Bernardo Do Campo, Brazil
关键词
Surfactant; Bio-surfactant; Enhanced oil recovery; Wettability; IFT; Core flooding; WETTABILITY ALTERATION; BIOSURFACTANTS;
D O I
10.1007/s43153-021-00208-0
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Bio-surfactant solutions have been point out as a promissory component to replace fossil-derived surfactants to improving the displacement efficiency in enhanced oil recovery (EOR) methods. This study compares the performance of rhamnolipid as a bio-surfactant and sodium dodecylbenzene sulfonate (SDBS) as a synthetic surfactant in EOR from carbonate reservoirs. The effects of their use were evaluated by considering the effect of different levels of salinity and the results of various well-established experimental tests such as of fluid-phase behaviour, wettability alteration, interfacial tension (IFT) reduction, and core flooding. The rhamnolipid bio-surfactant has been recognized as a better surface agent used to change the wettability of calcite to a strong water-wet system in comparison to sodium dodecylbenzene sulfonate. The results confirmed that when the salinity of low-saline brine was increased to 0.6 M, with a concentration of 0.5 wt. % of rhamnolipid, the wettability of the rock surfaces changed to become more water-wet. Also, values of IFT between model oil and low-saline brine were measured as 1.1 +/- 0.3 and 2.8 +/- 0.4 (mN/m) when using the rhamnolipid and SDBS respectively as modifiers within the aqueous solutions. Finally, the outcomes of core flooding experiments revealed that the rhamnolipid surfactant could minimize flow problems arising from the formation of emulsions, leading to 14.98% higher ultimate oil recovery compared to SDBS.
引用
收藏
页码:825 / 833
页数:9
相关论文
共 50 条
  • [31] A Surfactant for Enhanced Heavy Oil Recovery in Carbonate Reservoirs in High-Salinity and High-Temperature Conditions
    Yang, Yu-Qi
    Li, Liang
    Wang, Xiang
    Fu, Yue-Qun
    He, Xiao-Qing
    Zhang, Shi-Ling
    Guo, Ji-Xiang
    ENERGIES, 2020, 13 (17)
  • [32] Applicability Test of New Surfactant Produced from Zizyphus Spina-Christi Leaves for Enhanced Oil Recovery in Carbonate Reservoirs
    Shahri, Mojtaba Pordel
    Shadizadeh, Seyed Reza
    Jamialahmadi, Mohammad
    JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2012, 55 (01) : 27 - 32
  • [33] The Solubilization Effect of Rhamnolipid Bio-Surfactant on the Saturated Hydrocarbons And Polycyclic Aromatic Hydrocarbons in Crude Oil under Varying Environmental Conditions
    Zhang, Wen
    Yang, Yong
    Huang, Hai
    Sang, Zhi-Wei
    Wang, Chen-Yang
    INTERNATIONAL CONFERENCE ON ENVIRONMENTAL PROTECTION AND HUMAN HEALTH (EPHH 2014), 2015, : 258 - 264
  • [34] An investigation into surfactant flooding and alkaline-surfactant-polymer flooding for enhancing oil recovery from carbonate reservoirs: Experimental study and simulation
    Firozjaii, Ali Mohsenatabar
    Derakhshan, Amin
    Shadizadeh, Seyed Reza
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2018, 40 (24) : 2974 - 2985
  • [35] Evaluating the feasibility of using a rapeseed oil-derived anionic polymeric surfactant for enhanced oil recovery from carbonate/sandstone composite reservoirs
    Nowrouzi, Iman
    Mohammadi, Amir H.
    Manshad, Abbas Khaksar
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2024,
  • [36] Study on the Synergistic Effects between Petroleum Sulfonate and a Nonionic-Anionic Surfactant for Enhanced Oil Recovery
    Luan, Huoxin
    Zhou, Zhaohui
    Xu, Chongjun
    Bai, Lei
    Wang, Xiaoguang
    Han, Lu
    Zhang, Qun
    Li, Gen
    ENERGIES, 2022, 15 (03)
  • [37] Performance of extended surfactant and its mixture with betaine surfactant for enhanced oil recovery in sandstone reservoirs with low permeability
    Zhang, Guoqing
    Zheng, Yancheng
    Tian, Fuquan
    Liu, Hai
    Lu, Xiaobing
    Yi, Xiao
    Wang, Zhengliang
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 391
  • [38] Preliminary evaluation of a natural surfactant extracted from Myrtus communis plant for enhancing oil recovery from carbonate oil reservoirs
    Nowrouzi, Iman
    Mohammadi, Amir H.
    Manshad, Abbas Khaksar
    JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2022, 12 (03) : 783 - 792
  • [39] Critical investigation of zwitterionic surfactant for enhanced oil recovery from both sandstone and carbonate reservoirs: Adsorption, wettability alteration and imbibition studies
    Kumar, Amit
    Mandal, Ajay
    CHEMICAL ENGINEERING SCIENCE, 2019, 209
  • [40] Preliminary evaluation of a natural surfactant extracted from Myrtus communis plant for enhancing oil recovery from carbonate oil reservoirs
    Iman Nowrouzi
    Amir H. Mohammadi
    Abbas Khaksar Manshad
    Journal of Petroleum Exploration and Production Technology, 2022, 12 : 783 - 792