Time Varying Metric Learning for visual tracking

被引:6
|
作者
Li, Jiatong [1 ,2 ]
Zhao, Baojun [1 ]
Deng, Chenwei [1 ]
Da Xu, Richard Yi [2 ]
机构
[1] Beijing Inst Technol, 5 South Zhongguancun St, Beijing 100081, Peoples R China
[2] Univ Technol Sydney, 81 Broadway, Ultimo, NSW 2007, Australia
关键词
Metric learning; Visual tracking; Wishart process; OBJECT TRACKING;
D O I
10.1016/j.patrec.2016.06.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional tracking-by-detection based methods treat the target and the background as a binary classification problem. This two class classification method suffers from two main drawbacks. Firstly, the learning result may be unreliable when the number of training samples is not large enough. Secondly, the binary classifier tends to drift because of the complex background tracking conditions. In this paper, we propose a new model called Time Varying Metric Learning (TVML) for visual tracking. We adopt the Wishart Process to model the time varying metrics for target features, and apply the Recursive Bayesian Estimation (RBE) framework to learn the metric from the data with "side information contraint". Metric learning with side information is able to omit the clustering of negative samples, which is more preferable in complex background tracking scenarios. The recursive Bayesian model ensures the learned metric is accurate with limited training samples. The experimental results demonstrate the comparable performance of the TVML tracker compared to state-of-the-art methods, especially when there are background clutters. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:157 / 164
页数:8
相关论文
共 50 条
  • [41] Real-Time Visual Tracking: Promoting the Robustness of Correlation Filter Learning
    Sui, Yao
    Zhang, Ziming
    Wang, Guanghui
    Tang, Yafei
    Zhang, Li
    COMPUTER VISION - ECCV 2016, PT VIII, 2016, 9912 : 662 - 678
  • [42] End-to-end deep metric network for visual tracking
    Tian, Shengjing
    Shen, Shuwei
    Tian, Guoqiang
    Liu, Xiuping
    Yin, Baocai
    VISUAL COMPUTER, 2020, 36 (06): : 1219 - 1232
  • [43] End-to-end deep metric network for visual tracking
    Shengjing Tian
    Shuwei Shen
    Guoqiang Tian
    Xiuping Liu
    Baocai Yin
    The Visual Computer, 2020, 36 : 1219 - 1232
  • [44] Predicting time-varying, speed-varying dilemma zones using machine learning and continuous vehicle tracking
    Rahman, Moynur
    Kang, Min-Wook
    Biswas, Pranesh
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2021, 130
  • [45] A survey on online learning for visual tracking
    Mohammed Y. Abbass
    Ki-Chul Kwon
    Nam Kim
    Safey A. Abdelwahab
    Fathi E. Abd El-Samie
    Ashraf A. M. Khalaf
    The Visual Computer, 2021, 37 : 993 - 1014
  • [46] Incremental Learning for Robust Visual Tracking
    David A. Ross
    Jongwoo Lim
    Ruei-Sung Lin
    Ming-Hsuan Yang
    International Journal of Computer Vision, 2008, 77 : 125 - 141
  • [47] Geometric Hypergraph Learning for Visual Tracking
    Du, Dawei
    Qi, Honggang
    Wen, Longyin
    Tian, Qi
    Huang, Qingming
    Lyu, Siwei
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (12) : 4182 - 4195
  • [48] Learning attention modules for visual tracking
    Wang, Jun
    Meng, Chenchen
    Deng, Chengzhi
    Wang, Yuanyun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (08) : 2149 - 2156
  • [49] LEARNING TIME VARYING GRAPHS
    Kalofolias, Vassilis
    Loukas, Andreas
    Thanou, Dorina
    Frossard, Pascal
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2826 - 2830
  • [50] Deep Learning in Visual Tracking: A Review
    Jiao, Licheng
    Wang, Dan
    Bai, Yidong
    Chen, Puhua
    Liu, Fang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (09) : 5497 - 5516