A Survey of Disease Progression Modeling Techniques for Alzheimer's Diseases

被引:0
|
作者
Wang, Xulong [1 ]
Qi, Jun [2 ]
Yang, Yun [1 ]
Yang, Po [3 ]
机构
[1] Yunnan Univ, Dept Software, Kunming, Yunnan, Peoples R China
[2] Univ Oxford, Dept Engn Sci, Oxford, England
[3] Liverpool John Moores Univ, Dept Comp Sci, Liverpool, Merseyside, England
关键词
Alzheimer's disease; disease progression; regression model; multi-task learning;
D O I
10.1109/indin41052.2019.8972091
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Modeling and predicting progression of chronic diseases like Alzheimer's disease (AD) has recently received much attention. Traditional approaches in this field mostly rely on harnessing statistical methods into processing medical data like genes, MRI images, demographics, etc. Latest advances of machine learning techniques grant another chance of training disease progression models for AD. This trend leads on exploring and designing new machine learning techniques towards multi-modality medical and health dataset for predicting occurrences and modeling progression of AD. This paper aims at giving a systemic survey on summarizing and comparing several mainstream techniques for AD progression modeling, and discuss the potential and limitations of these techniques in practical applications. We summarize three key techniques for modeling AD progression: multi-task model, time series model and deep learning. In particular, we discuss the basic structural elements of most representative multi-task learning algorithms, and analyze a multi-task disease prediction model based on longitudinal time. Lastly, some potential future research direction is given.
引用
收藏
页码:1237 / 1242
页数:6
相关论文
共 50 条
  • [21] Assessing disease progression in Alzheimer's disease
    Katzourou, I.
    Holmans, P.
    Williams, J.
    Escott-Price, V.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2020, 31 : S61 - S62
  • [22] Longitudinal Exposure—Response Modeling of Multiple Indicators of Alzheimer’s Disease Progression
    D. G. Polhamus
    Michael J. Dolton
    J. A. Rogers
    L. Honigberg
    J. Y. Jin
    A. Quartino
    The Journal of Prevention of Alzheimer's Disease, 2023, 10 : 212 - 222
  • [23] Modeling Alzheimer's Disease Progression with Fused Laplacian Sparse Group Lasso
    Liu, Xiaoli
    Cao, Peng
    Goncalves, Andre R.
    Zhao, Dazhe
    Banerjee, Arindam
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2018, 12 (06)
  • [24] Simultaneous modeling of Alzheimer's disease progression via multiple cognitive scales
    Kuhnel, Line
    Berger, Anna-Karin
    Markussen, Bo
    Raket, Lars L.
    STATISTICS IN MEDICINE, 2021, 40 (14) : 3251 - 3266
  • [25] Scaled Event Based Modeling to Elucidate Alzheimer's Disease Progression Dynamics
    Tandon, Raghav
    Lah, James J.
    Mitchell, Cassie S.
    ANNALS OF NEUROLOGY, 2023, 94 : S86 - S86
  • [26] Predicting progression of Alzheimer's disease
    Rachelle S Doody
    Valory Pavlik
    Paul Massman
    Susan Rountree
    Eveleen Darby
    Wenyaw Chan
    Alzheimer's Research & Therapy, 2
  • [27] Metabolome in progression to Alzheimer's disease
    M Orešič
    T Hyötyläinen
    S-K Herukka
    M Sysi-Aho
    I Mattila
    T Seppänan-Laakso
    V Julkunen
    P V Gopalacharyulu
    M Hallikainen
    J Koikkalainen
    M Kivipelto
    S Helisalmi
    J Lötjönen
    H Soininen
    Translational Psychiatry, 2011, 1 : e57 - e57
  • [28] Predicting progression of Alzheimer's disease
    Doody, R
    Pavlik, V
    Massman, P
    Rountree, SS
    Darby, E
    Chan, W
    NEUROLOGY, 2006, 66 (05) : A347 - A347
  • [29] Progression of atrophy in Alzheimer's disease
    Killiany, Ronald
    LANCET NEUROLOGY, 2006, 5 (10): : 805 - 806
  • [30] Metabolome in progression to Alzheimer's disease
    Oresic, M.
    Hyotylainen, T.
    Herukka, S-K
    Sysi-Aho, M.
    Mattila, I.
    Seppanan-Laakso, T.
    Julkunen, V.
    Gopalacharyulu, P. V.
    Hallikainen, M.
    Koikkalainen, J.
    Kivipelto, M.
    Helisalmi, S.
    Lotjonen, J.
    Soininen, H.
    TRANSLATIONAL PSYCHIATRY, 2011, 1 : e57 - e57